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Abstract

The download on the wing produced by the rotor-induced downwash of a tilt rotor
aircraft in hover is of major concern because of its severe impact on payload-carrying
capability. A method has been developed to help gain a better understanding of
the fundamental fluid dynamics that causes this download, and to help find ways to
reduce it. In particular, the method is employed in this work to analyze the effect
of a tangential leading edge circulation-control jet on download reduction. Because
of the complexities associated with modeling the complete configuration, this work
focuses specifically on the wing/rotor interaction of a tilt rotor aircraft in hover.
The three-dimensional, unsteady, thin-layer compressible Navier-Stokes equations are
solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI
factorization. The rotor is modeled as an actuator disk which imparts both a radial
and an azimuthal distribution of pressure rise and swirl to the flowfield. A momentum
theory/blade element analysis of the rotor is incorporated into the Navier-Stokes
solution method. Solution blanking at interior points of the mesh has been shown
here to be an effective technique in introducing the effects of the rotor and tangential
leading edge jet. Results are presented both for a rotor alone and for wing/rotor
interaction. The overall mean characteristics of the rotor flowfield are computed
including the flow acceleration through the rotor disk, the axial and swirl velocities
in the rotor downwash, and the slipstream contraction. Many of the complex tilt
rotor flow features are captured including the highly three-dimensional flow over the
wing, the recirculation fountain at the plane of symmetry, wing leading and trailing

edge separation, and the large region of separated flow beneath the wing. Mean wing



surface pressures compare fairly well with available experimental data, but the time-
averaged download/thrust ratio is twenty to thirty percent higher than the measured
value. This discrepancy is due to a combination of factors that are discussed. Leading
edge tangential blowing, of constant strength along the wing span, is shown to be
effective in reducing download. The jet serves primarily to reduce the pressure on
the wing upper surface. The computation clearly shows that, because of the three-
dimensionality of the flowfield, optimum blowing would involve a spanwise variation

in blowing strength.
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Chapter 1

Introduction

1.1 Motivation

The tilt rotor aircraft is a unique flight vehicle which combines the vertical takeoff and
landing capability of the helicopter with the efficient high-speed cruise performance
of conventional fixed-wing aircraft. This is achieved by positioning, at both wing tips
of a fixed wing, a rotor which can be tilted so as to provide lift for hover and thrust
for cruise flight.

The concept was first proposed by Bell Helicopter engineers during World War II,
and it evolved into a first prototype in 1955, designated the XV-3 [1]. In 1977, the
NASA/Army/Bell XV-15, a 13,000 1b experimental tilt rotor aircraft, flew for the
first time in a research program that continues today. The usefulness of the tilt rotor
aircraft is evidenced in the recent development of the V-22 Osprey for the U.S. Armed
Forces by a Bell Helicopter Textron/Boeing Helicopters team. The V-22 is a multi-
service, multi-mission tilt rotor aircraft. It has a vertical take-off weight of 55,000 1b
and is capable of transporting up to 40 passengers.

The tilt rotor vehicle with its unique features can also be exploited as a civil
transport in the city-center to city-center commuter market or as a feeder to hub
airports. The need for such a mode of transport will certainly increase as community
real estate prices continue to increase, making new airport construction prohibitively

expensive, driving new airport locations further away from large population densities.



CHAPTER 1. INTRODUCTION

The tilt rotor (in this report, “tilt rotor” refers to the entire configuration, i.e. the
airframe and the rotors, not just the rotors) offers several considerable advantages
over the rival tilt wing concept (in which the rotors and wing both rotate in the
transition from helicopter to airplane mode and back). Wing tilt requires additional
mechanical complexity resulting in increased structural weight to support the higher
concentrated wing/fuselage junction loads. Also, due to the large exposed frontal wing
area in hover, the tilt wing, in vertical flight in gusty wind or cross-wind conditions,
is much more susceptible to controllability problems than the tilt rotor.

A major limitation of the current tilt rotor configuration, however, is the aerody-
namic download imposed on the wing by the rotor flowfield when hovering. Because
the wing is fixed, the rotor flow, in hover, hits the wing near 90 degrees. The down-
load force on the wing has been measured and can be as large as 10 — 15 percent of
the total rotor thrust [2,3]. Assuming the payload-carrying capability to be about
25% of gross take-off weight, complete elimination of the download could increase the
effective payload by over 50%. The need for a thorough understanding, and the even-
tual reduction, of wing download, then, is the major impetus driving this theoretical
study on tilt rotor flowfields.

The flowfield about a tilt rotor configuration is very complex. The rotor, typically
located about one wing chord above the tilt rotor wing, induces a flow which is closely
coupled to the flow about the wing. The rotor flowfield itself is very complicated.
The rotor imparts not only a vertical downwash to the flowfield, but also, due to the
rotational motion of the rotor, a velocity tangential to the circumferential direction
called the swirl velocity. The outer portions of the rotor blades see a transonic flow
which may, at very high tip speeds, even yield upper surface shocks and shock-induced
boundary layer separation. A spiraling wake vortex sheet is shed from each blade.
Regions of concentrated vorticity (tip vortices) which trail from the blade tips, also
propagate in a helical motion in the rotor wake interacting with the following blades
and also with the wing. On the tilt rotor wing upper surface there exists a large
region of nearly-stagnated flow. The flow is highly three-dimensional with essentially
a two-dimensional chordwise flow near the wing tip which becomes primarily spanwise

further inboard along the wing. Due to symmetry of the hovering tilt rotor flowfield,
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the spanwise flow from both wings meets at the vehicle centerline and is redirected
upwards. Some of this rising column of air is re-ingested by the rotor thus creating a
large-scale recirculation patterh which reduces rotor performance. This flow pattern
has been termed the “fountain effect”. Beneath the wing is a large region of unsteady,
turbulent, separated flow. Refer to Fig. 1 taken from Ref. [3] for simplified sketches
of the main flow features about a V-22 in hover.

As stated previously, the primary motivation for this work is to gain a better
understanding of the tilt rotor flowfield in hover with the hope that this would lead
to ways of reducing the download in future designs. The wing and the rotor and
their close proximity to each other is the principal contributor to wing download.
The effects of the fuselage, tail, and nacelle of the tilt rotor aircraft on download,
although perhaps not unimportant, are secondary. It is desired, in this study, to
analyze the principal features of the tilt rotor flowfield by solving the Navier-Stokes
equations. This allows the modeling of the physics of the flowfield far more accurately
than hitherto attempted. The state of the art, at this time, in the numerical solution
of these equations does not permit the simultaneous computation of the complete tilt
rotor aircraft. This current study, therefore, focuses on the Navier-Stokes solution of

wing/rotor interaction for a tilt rotor aircraft in hover.

1.2 Previous Work

1.2.1 Experimental Work

Flight test of the XV-15 [1,4] has yielded quantitative estimates of hover performance
including the effect of flap deflection on download. Figure 2 taken from Ref. [1] shows
the download (DL) normalized by the rotor thrust (T') plotted as a function of flap
angle. These measurements were taken at a sufficient height above the ground so
as to eliminate ground effect. The ratio DL/T is reduced from over 16% at zero
flap deflection to about 9% when the flaps are deflected to 67°. With increasing
flap deflection, the download is reduced, due not only to the reduction of wing area

affected by the rotor downwash, but also to the reduction of vertical drag coefficient.
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Superimposed on the same figure is a data point from a NASA outdoor test [9] of a
0.658-scale model of the V-22 rotor and wing. (This test is discussed further below).

To study the tilt rotor flowfield, the flexibility and control offered by wind tunnel
testing has been found to be very helpful. McCroskey et al. [5] measured the drag of
two-dimensional wind tunnel models of the XV-15 airfoil (a modified NACA 64A223)
with various flap and leading edge configurations. They found that the drag on the
airfoil in a freestream flow at -90 degrees was very sensitive to not only flap angle but
also the surface curvature distribution on the upper surface near the leading edge.
Increasing the flap angle reduces the frontal area thereby reducing the download.
The shape of the airfoil and flap also affect the vertical drag. A flat plate has a 2-D
drag coefficient about twice that of a circular cylinder. Increasing airfoil thickness
and camber, then, which tend to make the airfoil less like a flat plate and more like
a circular cylinder or ellipse, contribute to download reduction. Further discussions
on the effects of wing geometry on download can be found in a review of tilt rotor
download research by Felker [6].

Maisel et al. [7] continued this 2-D experimental effort on the XV-15 airfoil by
examining the effects of several different flap and leading edge configurations on the
download. They found that reduction of “frontal” area resulting from flap deflection
accounted for less than half of the total download reduction. It was observed that
modification of the contours of the leading edge and of the flap had a significant
impact on download reduction by delaying flow separation. Increasing the curvature
on the flap upper surface and introducing a slat in front of the leading edge both
aided in reducing the download.

Also, it was found that the measured download was sensitive to variations in angle
of attack away from -90°. This demonstrates the need to include the effect of swirl
imparted by the rotor in any attempt to accurately predict the download on an actual
three-dimensional tilt rotor configuration. Reference [7] also notes that the download
is fairly insensitive to the Reynolds number, at least in the range tested — from
0.6x10° to 1.4x10%. This indicates that uncertainties arising from the definition of the
Reynolds number appropriate for the wing/rotor configuration in hover should not

affect the results.
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Boeing has tested a powered tilt rotor model whose basic geometry was that of
a 0.15-scale V-22 Osprey. Some results of this test are reported in Ref. [8]. Flow
visualization verified the existence of chordwise flow on the wing upper surface near
the wing tip and spanwise flow further inboard. The recirculation pattern at the plane
of symmetry was observed, and due to re-ingestion of the fountain flow into the rotors,
a loss in rotor thrust at a given power setting was measured. The 0.15-scale model test
also served to evaluate the effect of changing the direction of rotor rotation on airframe
download. Regardless of rotation direction, download decreased with increasing flap
deflection. With the normal sense of rotation, i.e. the rotor blade passage above the
wing is from leading edge to trailing edge, minimum download occurred at a flap
deflection of about 75 — 80 degrees and, thereafter, began to increase. This was due
to flow separation from the flap upper surface. With rotor rotation in the opposite
direction (trailing-to-leading edge), the download was lower at the low flap settings
and decreased continuously as the flaps were extended to beyond 90 degrees, reaching
the same minimum value as observed for the normal rotation direction. This difference
in behavior is due to the swirl in the rotor flowfield, and, in particular, the angle at
which the flow impinges on the wing. These experimental observations reinforce the
need to model the rotor swirl, if an accurate prediction of download is to be obtained.

Several experimental tests of a rotor alone in hover and of wing/rotor interaction
have been undertaken at NASA Ames Research Center. Results from large-scale
tests of a 0.658-scale V-22 rotor and wing conducted at the Outdoor Aerodynamic
Research Facility (OARF) at NASA Ames are reported in Refs. [2,3,9]. A similar test
of the 0.658-scale V-22 wing and rotor was undertaken in the 40- by 80-Foot Wind
Tunnel at Ames; results are reported in Refs. {10,11]. The rotor blade planform
differed slightly from that in the OARF test to reflect the evolving changes in the
V-22 design. These tests provided measurements of rotor performance, wing surface
pressures, and wing download. The OARF test measured the performance of the rotor
alone. Rotor wake surveys showed the changes in the radial distribution of downwash
velocity for different rotor thrust coefficients. Higher thrust levels yielded greater
downwash velocities in the outer region of the wake than in the inboard portion of

the wake. At lower thrust coefficients, the effect was reversed — the outer portions
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of the wake had lower downwash velocities than the inboard region. The maximum
value of the rotor figure of merit for the isolated rotor was found to be 0.808. This
was reduced to 0.793 for the rotor in the presence of the wing, due to the region
of recirculating flow at the plane of symmetry. Flow visualization at the OARF
of the wing/rotor flowfield provided insight into the fountain flow and also clearly
demonstrated the transition of chordwise flow on the wing upper surface near the
wing tip to spanwise flow on the inboard portion of the wing. Both tests measured
the small reductions in the download/thrust ratio that were due to increasing rotor
thrust coefficient. Felker and Light [2] explained this effect as being due to the
variations in the radial distributions of velocity (or dynamic pressure) in the wake
due to changes in thrust coeflicient. The inboard portion of the rotor wake contributes
mainly to the chordwise flow over the wing upper surface, and the outboard portion
of the wake contributes mainly to the spanwise flow. The local download on the wing
is greater in regions of chordwise flow than in regions of spanwise flow. Changes in
downwash distribution with rotor thrust coefficient Cr, therefore, affect the relative
contributions of chordwise and spanwise flows to the total download. As the rotor
thrust coefficient increases, the dynamic pressure in the outboard portion of the
wake (near the wing root) increases, and consequently, the rotor dynamic pressure
distribution contributes more to the spanwise flow and relatively less to the chordwise
flow, resulting in a reduced download-to-thrust ratio.

In Ref. [2], Felker and Light describe their results from a 0.16-scale model test
of the Sikorsky S-76 rotor with two different wings — (i) a conventional wing and a
25% plain flap, and (ii) a circulation control wing possessing slots near the leading
and trailing edges for boundary layer control using tangential blowing. As in the test
reported in Ref. [7], it was found that the download reduction due to increasing flap
deflection was due to a combination of planform area reduction and the reduction of
drag coefficient due to the changing geometry.

Beneath the wing of a tilt rotor configuration in hover, there exists a large re-
gion of separated flow typical of bluff bodies, as previously described. Because the
static pressure in the separated flow region is generally somewhat less than freestream

ambient pressure, a suction force on the wing lower surface contributes to the total

6
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download. By energizing the boundary layer using tangential blowing near the lead-
ing edge (where the flow is close to separating), it should be p‘ossible to move the
separation location further around the leading edge on the lower surface, by exploit-
ing the Coanda effect. This should reduce the chordwise extent of the separated flow
region below the wing and increase the lower surface pressure, thereby contributing
to download reduction.

In tests by Felker and Light [2] using the 0.16-scale circulation control wing,
however, it was found that most of the download reduction due to blowing was a
result not of movement of the separation location and increase of base (wing lower
surface) pressure, but of the decrease in pressure on the wing upper surface. The
measured increase in pressure on the lower surface (that is expected with movement
of the separation location towards the mid-chord) contributed only about 1/3 to the
total download reduction. It was also observed that the reduction in pressure on the
wing upper surface near the leading edge extended well aft of the location of the
blowing slot. The blowing jet, then, entrained part of the rotor downwash, reducing
the extent of near-stagnated flow on the wing upper surface, thereby contributing
significantly to the download reduction. Figure 3, taken from Ref. [2], shows typical
wing surface pressure distributions on the circulation control wing with and without
blowing. The blowing slots were located at 3 percent and 97 percent of wing chord
on the upper surface, the former blowing towards the leading edge, the latter towards
the trailing edge. Figure 4, also taken from Ref. [2], shows the measured reduction
in download/thrust ratio (DL/T') for a range of total pressures of the blowing slot
supply plenum (used to control blowing jet velocity). The download/thrust was
reduced by as much as 26% with blowing at both slots. It was found that blowing
at the leading edge was particularly effective in reducing the download, contributing
about 65 percent to this total reduction due to blowing. As the plenum pressure was
increased beyond its optimum value, the download/thrust began to increase due to
the jet extending further along the airfoil surface, increasing negative pressures on

the lower surface aft of the leading edge.
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1.2.2 Theoretical Work

The discussion below focuses on the theoretical modeling of: (i) a wing/rotor, and

(i1) a rotor alone.

~ Wing/Rotor Modeling

Previous theoretical studies of airfoil and wing download in hover have either solved
simpler fluid dynamic equations than in the current study or restricted the analysis
to two dimensions.

Clark and McVeigh in Ref. [12] and Clark in Ref. [13] describe the application of
a three-dimensional low-order panel method to a tilt rotor configuration. The rotor
was modeled as an actuator disk using source singularities, and the rotor wake was
represented by a time-averaged cylindrical vortex sheath. A blade element model of
the rotor was used to feed time-averaged loading as a function of radial and azimuthal
location to the panel code which also contained a model of the wing. The wing was
modeled simply as a cambered plate usiné a lattice of doublet singularities. More re-
cently, Lee [14] computed the 3-D tilt rotor flowfield using an unsteady, time-marching
panel method. Wake filaments are shed from the edge of the rotor (modeled as an
actuator disk) as well as the wing leading and trailing edges. Both of the above panel
models were able to predict many of the overall tilt rotor flow features. Quantitative
results, however, because of the nature of the equations solved (L‘aplace’s equation)
must be viewed with caution as separated flows cannot be accurately predicted with
this formulation without a priori knowledge of separation locations and total or dy-
namic pressures in the wake region. As found in the experimental work described
in Ref. [5], the separation location is very sensitive to leading edge curvature and
thickness. Also, swirl in the flowfield can cause early separation on the flap at a
considerable distance forward of the trailing edge. These important effects cannot
be accurately predicted using a panel method. In fact, in the above panel models,
the separation location was fixed at the wing leading and trailing edges. Download,
therefore, which is dependent on viscous effects, can only be accurately predicted

using an analysis which incorporates the effect of viscosity.
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References [5,15] describe discrete-vortex seeding methods to calculate the un-
steady, 2-D flow around an airfoil at an angle of attack of -90 degrees, by solving the
vorticity transport equation. In Ref. [5], the wing is immersed in a freestream flow. In
Ref. [15], to study rotor/wing interaction, a rotor is modeled using constant strength
doublet panels which induce a normal velocity distribution. Since no integral bound-
ary layer calculation was coupled with the potential flow calculation, boundary layer
growth and separation location were not predicted. Separation location was specified
and a uniform base pressure on the wing lower surface was assumed. The methods
predicted the upper surface pressures fairly well but were incapable of accurately
calculating the lower surface pressure.

Raghavan et al. [16] performed 2-D laminar Navier-Stokes computations on the
XV-15 airfoil at -90 degrees angle of attack in a low Mach number and low Reynolds
number freestream flow. The converged solution showed a significant periodic un-
steadiness in the flowfield due to vortices shedding alternately from the airfoil leading
and trailing edges. The mean value of the computed unsteady download did not
correspond well with experimental measurements. This was again due to difficulty
in predicting the base pressure. The inability to accurately model turbulence in the
wake contributed to the observed discrepancies.

Stremel [17] computed the 2-D flowfield about a NACA 0012 airfoil with and
without a deflected flap, using a velocity-vorticity formulation of the unsteady in-
compressible Navier-Stokes equations. His unsteady lift and drag results compared
favorably with those of Ref. [16]. As the selected Reynolds number was 200, only
laminar flow was computed.

Since the flow over the tilt rotor wing is highly three-dimensional, two-dimensional
analyses such as those mentioned above are of limited usefulness. It is anticipated
that, in three dimensions, due to a less-constrained flowfield than in two dimensions,
the vortex shedding and turbulence in the wing wake will be reduced in strength,
and a more accurate prediction of the separated flow region beneath the wing will be

possible.
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CHAPTER 1. INTRODUCTION

Rotor Modeling

As mentioned earlier, the flowfield of a lifting rotor alone in hover is very complicated.
Each blade can be viewed as a rotary wing that sheds a sheet of vorticity in the form
of a thin wake which trails the blade in a helical pattern. The change in blade
loading occurs-'mostly at the blade tip. ‘Much of the rotor wake vorticity, therefore,
is concentrated in tip vortices which propagate in helices below the rotor disk. It
is the combined effect of the vorticity in the wakes from all blades (in addition to
the bound vorticity on the blades) that induces the axial and rotational motion in
the rotor flowfield — i.e. the downwash and swirl. The acceleration of the flow
beneath the rotor gives rise to contraction of the rotor flowfield. Characteristic of
the rotor flowfield in hover is the close proximity of the wake shed from one blade
to the following blades. These interactions can have a significant impact on local
blade loading which affects overall rotor performance (see any text on helicopter
aerodynamics; for example, Johnson [18]). Although all features of the flow physics
can be accurately modeled only with the Navier-Stokes equations, the rotor flowfield
has been modeled using a wide range of methods of varying complexity and accuracy.

Application of momentum theory, or a combination of momentum theory and
blade element analysis, to an actuator disk representation of the rotor provides a
time- and space-averaged approximation of the rotor loads and the resulting induced
velocities in the rotor downwash. The local effect of shed vorticity on the following
blades is not computed. Prescribed wake and free wake hover analysis methods
model the wake as vortex sheets and filaments. In the prescribed wake approach the
wake geometry is specified from experimental data; the free wake approach computes
the force-free positions of the vortices. These two methods, in wide use today, are
commonly coupled with lifting line or surface representations of the rotor blades.
They are valid only for incompressible, potential flows.

The transonic flow on the blades can be computed by solving the full potential
equation. This typically requires a finite difference or finite volume solution method
which uses a grid around the rotor blades. Because the full potential equation does
not allow for the convection of vorticity, modeling a free vortex wake within the finite

difference domain must be modeled in Lagrangian fashion where the Biot-Savart law
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is used to compute the induced velocities.

The Euler equations permit the transport of vorticity and are therefore better
suited to the computation of blade/vortex sheet interaction. Ideally one would use the
Euler or Navier-Stokes equations to model the complete rotor flowfield including not
only the near-field region around the rotor blades but also the wake region extending
below the rotor. Current computer limitations, however, do not permit the solution
at the huge number of grid points that would be required to model the flowfield near
each blade and the thin vortex sheets and highly concentrated tip vortices that extend
far below the rotor. Coarse grids, which might be manageable in terms of available
computer resources, are not only unable to resolve the concentrated vorticity, but
also introduce unwanted numerical dissipation. This causes excessive, non-physical
diffusion of the vorticity leading to inaccuracies in the overall solution.

In Ref. [19], Stremel developed a method to compute the two-dimensional, time-
dependent evolution of a vortex wake behind a wing. His velocity-vorticity formula-
tion for the Euler equations permitted the computation of solutions that were rela-
tively independent of grid size. This is an important requirement for future methods
in three dimensions that would allow accurate vorticity transport on coarse meshes.
Stremel, in Refs. [20,17], extended the method to a velocity-vorticity formulation of
the unsteady incompressible Navier-Stokes equations. The convection of finite-core
vortices on a coarse mesh was combined with the viscous solution on a fine mesh
around a 2-D body. The method allowed for the distribution of the interacting vor-
tices onto the fine mesh.

Using a somewhat different approach, Srinivasan and McCroskey [21] computed
airfoil /vortex interaction in two dimensions. They simulated the situation where the
shed tip vortex of a rotor blade is parallel to a following blade. They solved the
2-D Euler and Navier-Stokes equations in a perturbation, conservation law form in
primitive variables. They refer to their method as a prescribed-vortex or perturbation
approach where the structure of the vortex is prescribed. The vortex is convected
through the flowfield without being diffused by the numerical dissipation that is
inherent in the computational method.

Methods of preserving vorticity on coarse grids are currently being developed for

11
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three-dimensional applications. Typically, however, current rotor flowfield computa-
tions eliminate the problems associated with numerical diffusion inherent in the finite
difference solution of wakes by modeling the wake region below the rotor using a pre-
scribed or free wake analysis. This wake model is then coupled to a near-field Euler
or Navier-Stokes solution around the rotor blades.

For example, Agarwal and Deese [22] solved the unsteady Euler equations for a he-
licopter rotor in hover using an explicit, finite volume method. The effect of the wake
on the rotor was computed using a free wake analysis to determine a correction applied
to the geometric angle of attack of the blades due to the local induced downwash. In
a similar approach, Roberts [23] coupled an explicit, finite volume Euler solver with a
free wake model for a two-bladed hovering rotor. The bound circulation distribution
along the span of each rotor blade was determined from the Euler solution and used
to set the strength of the wake vortices. The effect of the wake was introduced into
the Euler solution by using the wake-induced velocities to define the required outer
boundary conditions. Also, the local effect of the trailing vortices was modeled using
a prescribed flow perturbation scheme, similar to that implemented in Ref. [21].

Quasi-steady solutions of a 2-bladed rotor in hover have been obtained by Srinivasan
and McCroskey [24] using a flux-split, approximately-factored, implicit algorithm to
solve the unsteady, thin-layer Navier-Stokes equations. The computation of the vor-
tices shed from the rotor tips is affected adversely by numerical diffusion due to
insufficient grid density beneath the rotor. The effect of the shed vorticity in the
rotor wake, and in particular, the induced downwash, was estimated in a similar
fashion to Ref. [22], where a correction to the effective local angle of attack of the
hovering blades was made. In Ref. [25] Srinivasan et al. computed the viscous, three-
dimensional flowfield of a lifting 2-bladed helicopter rotor in hover without resorting
to any wake models. An upwind, implicit, finite-difference method was used to solve
the thin-layer Navier-Stokes equations in a computational domain of limited size that
extended only 8 rotor blade chords in all directions. Fine-grid (nearly one million
points) results for blade surface pressures corresponded well with experiment, and
the roll-up of the tip vortex was computed. This computation, although very impres-
sive, took about 15 CPU hours on the Cray-2 supercomputer. Due to the limited
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computational region, a solution was obtained for only two revolutions of the rotor
wake before the flow exited the downstream boundary. The results compare more
favorably with experiment than those of Ref. [24]. Further work is required, however,
to resolve important issues such as rotor drag and power, and detailed wake geometry.

In a computationally less demanding approach, Rajagopalan and Mathur [26]
modeled a three-dimensional rotor in forward flight using a distribution of momentum
sources added to the steady, incompressible, laminar Navier-Stokes equations. Rotor
geometry and blade sectional aerodynamic characteristics were incorporated into the
evaluation of the source terms. Their results represent a time-averaged solution. Shed
vortex details were not resolved due to the coarseness of the grid. In complexity,
this method lies between an actuator disk representation where the blade loads are
averaged over the rotor disk and an Euler (or Navier-Stokes) computation of the
individual blades.

McCroskey and Baeder [27] estimated that in order to calculate two revolutions of
a two-bladed rotor above a simple fuselage using a typical, implicit, thin-layer Navier-
Stokes code with algebraic eddy-viscosity modeling of turbulence, a 100 megaflop
computer would require 40 CPU hours and 30 million words of memory ( or 4 hours of
CPU for a one gigaflop machine). It is clear then, that accurate, routine calculations
of 3-D rotorcraft flows including detailed modeling of the rotor blades will remain

elusive for some time.

1.3 Current Approach

Despite the research efforts of the past several years, gaps in our fundamental under-
standing of the tilt rotor flowfield remain. It is the objective of this current work,
then, to gain a better understanding of this complex flowfield, by modeling it using
current computational fluid dynamic (CFD) techniques. It is hoped that many of the
limitations imposed by the previously-described two- and three-dimensional methods
applied to the tilt rotor flowfield may be removed. In particular, it is desired to
compute the wing download of a tilt rotor aircraft in hover, and to study the effects

of tangential blowing on download reduction. As can be inferred from the previous
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section, however, accurate, simultaneous, numerical prediction of all the tilt rotor
flow features discussed in Section 1.1 still lies beyond the state of the art. To render
the problem tractable, simplifications are made. Only the wing and rotor are mod-
eled. The fuselage, tail, nacelle, and rotor hub of the tilt rotor aircraft are neglected.
Study of the three-dimensional wing/rotor interaction of a tilt rotor configuration
in hover, then, is the primary focus of this work. Since accurate modeling of the
flow about the individual rotor blades and of the vorticity in the wake is a complex
task and a tremendous computational drain, and since the primary interest here is
in wing download prediction and not in detailed rotor simulation, the rotor modeling
is simplified in this study. The rotor is modeled as an actuator disk where the blade
loads are averaged over elemental areas of the rotor disk.

Flow separation from the x‘ving leading edge and from the flap, caused by signifi-
cant viscous effects, creates a large region of separated flow beneath the wing. This
region of the tilt rotor flowfield has a significant impact on wing download. Thus, the
Navier-Stokes equations, which model the viscosity in the flow, are used to describe
the flowfield. The form of these equations and the method of solution employed in this
study are discussed in the next chapter. The flow equations are discretized and solved
on a mesh of grid points. Chapter 3 is devoted to a discussion of the development of a
suitable 3-D mesh that possesses grid point distributions which permit the resolution
of not only the large-scale tilt rotor flowfield features but also the smaller-scale fea-
tures of the flow about the wing including the boundary layer and flow separations.
Chapter 4 discusses the implementation of the boundary conditions required by the
Navier-Stokes equations. The unique manner in which the rotor is modeled as an
integral part of the Navier-Stokes solution is also discussed. The implementation of
the tangential blowing jet is also described. Chapter 5 presents computed results of a-
rotor alone as well as wing/rotor interaction and compares them with some existing
experimental data. Results which show the download reduction effect of tangential
blowing are also presented. The final chapter, Chapter 6, summarizes the conclusions
drawn from this work and outlines some near and longer term recommendations for

further work.
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Chapter 2

Flow Equations and Solution

Method

2.1 General Comments

In this study the flowfield about a tilt rotor configuration is represented by the
unsteady thin-layer Navier-Stokes partial differential equations. It is assumed that
there are no body forces (eg. gravity effects are not important) and there is no heat
addition or removal. The thin-layer approximation, described later, assumes that
the viscous forces are confined to a small region near the wing surface. The basic
solution algorithm, employed to solve the equations, is referred to as the LU-ADI
scheme developed by Obayashi and Kuwahara [28]. It was extended and applied in
a Fortran computer code called “LANS3D” to a three-dimensional transonic wing
calculation [29] and a wing-fuselage transonic flow computation [30] by Fujii and
Obayashi. Yeh et al. applied this code to the Navier-Stokes computation of the flow
about a delta wing with spanwise [31] as well as tangential [32] leading edge blowing
used to control vortex shedding.

The solution algorithm, then, has been shown in the above-mentioned references
to be robust and eflicient for thin-layer Navier-Stokes computations. Although the
numerical time integration is performed in an implicit fashion, the boundary con-

ditions are updated explicitly. This allows easier application of the method to a
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wide variety of geometries and grid topologies. It was therefore decided, for the re-
search undertaken in this current work, to utilize the basic numerical scheme imple-
mented in that version of “LANS3D” previously applied to delta wing computations
by Yeh et al. [31,32,33]. Much of the effort involved in the research reported here
has focused on implementing and extending the above method to model the current
problem of interest — the tilt rotor flowfield in hover.

This chapter outlines the basic formulation of the equations and their method of
solution. Greater details of the basic numerical algorithm can be found in Refs. [28,
29,30,33]. Also discussed in this chapter are the modifications to the basic solution
algorithm that were implemented to provide an effective mechanism for modeling the
rotor and also the tangential jet on the wing surface. These modifications involve
exploiting the “blanking” feature of the so-called “chimera” technique [34]. This is
described in more detail later in this chapter and in Chapter 5. Also outlined briefly
in this chapter are the turbulence models employed for the general flowfield about

the wing and in the region of the tangential jet.

2.2 Governing Equations

The Navier-Stokes equations are the most basic continuum-representation of fluid dy-
namic flows. The equations are written and solved in conservation-law form where the
dependent variables are expressed in the form of spatial gradients (see, for example,
Refs. [33,35]). Although not particularly significant in the current low Mach num-
ber application where the locally-transonic rotor blade flow is not computed, the
conservation-law form ensures proper shock capturing (i.e. accurate prediction of
shock location and strength) for transonic flows. To convert the equations to a more
useful form for computational purposes and to apply the thin-layer approximation,
the full three-dimensional Navier-Stokes equations are first manipulated somewhat,
as described below.

For convenience, the equations are non-dimensionalized. The density p is divided

by the freestream density poo, the velocity components u, v, and w by the freestream
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speed of sound ., and the total energy per unit volume e by pooa’,. Conform-

ing to the normal convention, u is in the wing chord (z) direction (positive aft),
v is in the wing spanwise (y) direction (positive outboard), and w is in the verti-
cal (2) direction (positive upwards). The coefficient of viscosity y is normalized by
fico and the time is normalized by c¢/a, where c is the wing chord. Applying this
non-dimensionalization to the Navier-Stokes equations results in a term containing
the expression (peoeoC)/ Moo Which is simply the Reynolds number Re based on the
freestream speed of sound. -

Next, the Navier-Stokes equations are transformed from Cartesian coordinates
(z,y, z,t) to a generalized, body-fitted, curvilinear coordinate system (¢, 7,¢, 7). This
makes the formulation independent of the body geometry thereby easing the specifi-
cation of the boundary conditions. It also allows for straight-forward application of
the thin-layer assumption. In addition, since the physical domain is transformed into
a computational domain which is a rectangular parallelepiped with uniformly-sized
mesh cells, then standard differencing schemes for equi-spaced grid points can be used

for the spatial derivatives. The coordinate transformation is defined by:

£ = &(z,y,2,1)

n = n(z,y,21t)

¢ = ((z,y,21) (1)
T =t

where t and 7 are the independent variables of time in the physical and transformed
coordinates, respectively. The airfoil surface in the chordwise direction is transformed
to the £-coordinate, the spanwise direction is transformed to 7, and ¢ is normal to the
wing surface. Details of this transformation procedure can be found in Refs. [36,37].
By writing the transformation in terms of spatial derivatives and applying the chain

rule, a transformation Jacobian J and several identities called metrics can be defined

as follows:
ZL'( IL',, l'(
J=1/det| ye y, y (2)
Ze Zp ¢
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where z¢ = 0z/0¢, =, = 0z/0n, etc. The metrics are given by:

& =J Wz —yez)y  Go=J (yezy — ynze)

b =J(zezq—x020), G =J (Ty2ze — Te2y)

£ =J (Toyc—acyn)y, G =J (zeyn — To¥e) 3)
N = J (Yeze — yeze), b = —x,&r — Y&y — 2,

ny =J(zezc—T¢ze)y, M= =T M = Yy — 207

n: = J (xcyc - xey(), Ct = ":BTCI - y‘rCy - z‘rCz

Note that for stationary grids (no body motion), the metric time derivative terms are
zero. From a finite volume point of view, the transformation Jacobian J is the inverse
of the local grid cell volume, and the metrics are grid cell area projections.
Generally, for aerodynamic applications of practical interest (particularly in three
dimensions), the thin-layer approximation is applied to the Navier-Stokes equations
to reduce the computational effort. For the relatively high Reynolds numbers which
are typical of such problems, the viscous effects are confined to a small region near
the body surface and in the wake. Computer memory limitations usually necessitate
concentrating the available grid points near the surface of interest in order to resolve
the boundary layer. This results in grid spacing that is fine, normal and near to the
surface, and that is relatively coarse, tangential to the surface. With this type of grid,
even if the full Navier-Stokes equations were solved, the viscous terms possessing ve-
locity gradients tangential to the body would not be resolved because of insufficient
grid density along the surface. For most cases of interest (i.e. high Re flows), however,
these terms are negligible anyway. Therefore, it is justifiable to eliminate from the
calculation the viscous fluxes associated with the directions parallel to the surface,
i.e. the £- and 7- directions. This approximation is easily applied since the equations
are already transformed into the body-fitted computational domain. The thin-layer
' ap};roi)zlfn{;tjio?lismmllar mpfﬂosophy to the assumptions made in boundary layer
theory. Less restrictive than boundary layer theory, however, the thin-layer approxi-

mation retains the normal momentum equation and allows pressure variation across

the boundary layer.
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Beneath the wing of the tilt rotor configuration in hover the flow is turbulent,
unsteady, and separated, as mentioned in Chapter 1. In such a flow, all components of
the viscous stress exist and are probably important and shouldn’t be neglected. This,
then, is one of the major limitations of the present method for studying the tilt rotor
flowfield. Even if the full Navier-Stokes equations were solved, however, limitations of
the turbulence model (discussed in the next section) in regions of extensive separation
would contribute to inaccuracies in the computed flowfield. Nonetheless, the current
approach makes the calculation tractable and far superior to any method hitherto
applied to this problem.

Applying the thin-layer approximation, then, the non-dimensional, three-dimen-
sional, unsteady Navier-Stokes equations in conservation-law form in transformed,
body-fitted, curvilinear coordinates become:

dQ oL oF oG _ 1 8G,

ar Tt Yo Y a0 T Rea¢ @

where the symbol ¢’ indicates transformed variables. The Q) vector contains the

transformed, conservative flow variables:

p
pu
J pv (5)
pw

e

&>
Il

Note that the elements of the Q vector, as well as all flow variables referred to in
subsequent discussions in this chapter, are non-dimensional quantities, unless noted
otherwise.

The vectors E, F' and G contain the inviscid (or “Euler”) terms. The vector G,
contains all the viscous terms that remain after application of the thin-layer approx-

imation. The elements of these vectors are shown below:
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oy
Il

~ =

pU pV
pul + &p .1 puV + n.p
pU+Gp | F=51 poVtnp
pwlU + E,p pwV +n.p
| (e+p)U —&ip | | (e+p)V —mip |
pW ] [ 0 ]
puW + (.p ) : CoTew + CyToy + (o7
W HGp | Go=1 G+ Gy + (T (6)
pwW + (.p CoToz + CyTay + CoTex
| (e+p)W —Gp | | B+ By + (B ]

where p is the static pressure and U, V, and W are the contravariant velocity com-

ponents that appear as a result of the coordinate transformation. The contravariant

velocity U is the component of velocity parallel to the wing surface and in the direc-

tion of the wing chord, V is the component of velocity in the spanwise direction, and

W is normal to the wing surface. They are given below:

U
Vv
w

= G+&Eutéutbuw
= M+ nzu+ v+ nw (7)
= Ct + Czu + Cyv + (zw

The components of the viscous stress are defined by:

Trz

2

~ (e + vy w,) + 2
2

—5#(11.-; + vy + w;) + 2pvy

—%u(uz + vy +w,) + 2pw,

Tyo = b (uy + vz)

Tex = 4 (Us + wy) (8)
Tay = g (v + wy)

%’:—_Bseg + urpy + VT + WT,,
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By, = %%Bye; + uTyz + VTyy + WTy;

B. = %aze.' + UTss + VT + WTs
where u, = Qu/dz, v, = dv/dy, Oye; = Oe;/Ox, etc. From the definition of the total
energy e, the internal energy per unit mass is
é (40P +w?)

p 2

"—

The Prandtl number Pr is defined as Pr = c;,ﬁ/k where ¢, is the specific heat at
constant pressure and k is the coefficient of thermal conductivity. Also, 7 is the ratio
of specific heats which, for air, is equal to 1.4. Pressure is related to the conservative

flow variables through the equation of state for a perfect gas:
— P2, 2 2
p—(7—1)[e—2(u +v +w)] (9)

To evaluate the spatial derivatives of the Cartesian velocity components in Eq. 8, the

chain rule is applied. For example,
Uy = EpUg + Nty + Gl

Implicit in the expressions for the viscous stresses (Eq. 8) is the assumption that
the fluid is Newtonian (viscous stresses are linearly related to the rate of strain) and
that its properties are isotropic (having no preferred direction), and that it satisfies
Stokes’ hypothesis which states that the bulk viscosity (A + 2/3y) is zero. Experience
of many researchers over many years has shown that these assumptions are valid for

most flows of aerodynamic interest.

2.3 Turbulence Model

The unsteady Navier-Stokes equations are generally considered to accurately repre-
sent the physics of turbulent flows. In order, however, for a numerical solution of
these equations to resolve all scales associated with the turbulent eddies for large

Reynolds number flows, an extrerhely dense grid spacing resulting in a huge number
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of grid points would be required. Because of computer memory and speed limitations,
grids can not be made fine enough to fully capture the turbulence in the flow. It is
therefore necessary to use models for simulating turbulence. 7

The approach employed here is commonly taken for large Reynolds number 3-D
compressible Navier-Stokes computations. The Navier-Stokes equations are time-
averaged using a mass-weighted variable approach (refer, for example, to Ref. [38]).
The velocities and thermal dependent variables such as temperature and enthalpy are
split into a mass-averaged mean-flow part and a mass-averaged fluctuating quantity.
The pressure and density are defined as having a mean-flow part and a fluctuating
contribution which is not mass-averaged. Time-averaging gives rise to new terms in
the resulting “Reynolds-averaged” Navier-Stokes equations. These new terms can be
interpreted as “apparent” stress gradients and heat-flux quantities due to turbulent
motion. The turbulent stresses are commonly referred to as Reynolds stresses. Ap-
plying the Bousinesq assumption which relates the Reynolds stresses to the rate of
strain, the effect of turbulence can be approximated by an effective viscosity often
called “eddy” viscosity that is due to the additional mixing caused by the turbulent
flow. This turbulent viscosity model is far less demanding computationally than more
complicated (and more or less accurate) approaches which typically require the solu-
tion of additional differential equations that model the characteristics of turbulence.
To limit the computational requirements of an already demanding three-dimensional
problem, a simple algebraic turbulence model, discussed in the next section, is em-
ployed in this work. The total effective viscosity can then be defined as the sum of a

laminar contribution () and a turbulent part (u):
p=pt | (10)

The laminar viscosity contribution is determined from Sutherland’s formula:

[T\ T, +1986R
=t \ T3, T + 198.6°R

where T is the temperature in degrees Rankine (°R). The turbulent contribution to

an

viscosity g, is obtained from the algebraic turbulence model.

26



CHAPTER 2. FLOW EQUATIONS AND SOLUTION METHOD

Similarly, the total effective coefficient of thermal conductivity is expressed as:

k = k+k
Cplt , Cpht
= 4 = 12
Pr t Pr, ( )

For the range of temperatures and pressures of interest here, for air, the laminar
Prandtl number Pr; is 0.72 and the turbulent Prandtl number Pr; is 0.90 (see, for
example, Ref. [38]). '

An algebraic turbulence model developed by Baldwin and Lomax [39] for bound-
ary layers has been employed for the computations undertaken in this study. It is
applied to the flowfield around the wing. Because jet flows possess somewhat dif-
ferent turbulence characteristics, another turbulence model more appropriate for the
blowing region is used. An eddy viscosity model proposed by Roberts [40] for tur-
bulent wall jets on curved surfaces is implemented. These two turbulence models
are discussed briefly below. Based on a combination of theory and empiricism, these
models, although far from precise predictors of turbulence, do provide a means of

improving the simulation of a real flow.

2.3.1 The Baldwin-Lomax Model

The eddy viscosity model of Baldwin and Lomax [39] is in common use today for
estimating the effect of turbulence in aerodynamic flows. It uses a two layer formu-
lation that includes an inner region (where the wall has a considerable influence on

eddy size) and an outer region.

The eddy viscosity in the inner region is estimated using the Prandtl-Van Driest
formulation:

(Be)inner = I || (13)

where |w| is the magnitude of the vorticity (|V x V|) and [ is the “mixing” length

scale. In the outer region, the eddy viscosity is written as

(p’t)outer & Fmaz: Cma:z: (14)

where F.; and (pnq. represent the turbulent velocity and length scales in the outer

part of the boundary layer. The quantity Fi,q, is the maximum value of the following
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function:
F(¢) = (|w] [1 —exp (—¢*/A*)] (15)

where ¢(* = (/puTw/pw and the subscript w represents the conditions at the wall.
At is a constant equal to 26, and ( is the distance of a point in the flowfield normal
to the nearest solid wall. The value Cmu is the (-location where F () reaches a
maximum in a given velocity profile. In wake regions, because of the relatively-large
distance from the wing surface, {(* becomes increasingly large and the exponential
term of Eq. 15 approaches a value of zero. As suggested by Baldwin and Lomax, for
points in the wake, the exponential term is omitted. For the download computation,

this is applied to all points beneath the wing in the wake.

2.3.2 Turbulence Model for Wall Jet

The algebraic turbulence model, briefly described here, is used in the region of the
thin, tangential jet on the wing surface. Based on a semi-empirical theory by Roberts
[40], it was previously applied by Yeh [33] in the numerical study of delta wing leading
edge blowing.

Assuming self-similar velocity profiles typical of free jet flows, Roberts obtained a

simple expression for the eddy viscosity of a wall jet:

K 2
He = '4_k—2' Vias b (Z.’_ni—x) (16)

where K = 0.073 and & = 0.8814. Also, V.., is the maximum value of the mag-
nitude of velocity in a given velocity profile. Here (in.; represents the (-location
corresponding to V,,,.. The parameter b is the normal distance from the wall to the
(-location where the velocity is V,,,/2. Expeﬁments have shown b to have a value
of about 7{maz. For { > (naz, {/{maz is set to one.

Surface curvature causes extra rates of strain in the flow which affect the tur-
bulence structure by influencing the radial distribution of velocity fluctuations. Ac-
cording to Shrewsbury [41], this can increase the effective viscosity by an order of
magnitude greater than planar flows. The ratio — (V/R) /0V/3( represents the extra

rate of strain produced by the curvature normalized by the inherent shear strain,
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where R is the radius of curvature. This effect is added to the jet-induced viscosity

of Eq. 16 to obtain an estimate for the eddy viscosity of a curved wall jet:

_ K SN
Ht — 4k2 Vma:c Cmaz (Cmaz) (1 - 3V/8() , (17)

This turbulence model for the jet is applied in the region of the wall jet from the jet

exit slot to the flow separation point.

2.4 Numerical Algorithm

The numerical algorithm used here to solve the three-dimensional compressible thin-
layer Navier-Stokes equations is an implicit, time-accurate, finite difference scheme
developed by Fujii and Obayashi [29,30]. The algorithm has been extended in this
work to allow the “blanking out” or excluding of specified regions of the compu-
tational domain from the implicit solution. Values of the solution vector at these
blanked (excluded) locations are then updated explicitly using values obtained from
an independent analysis. This is a very convenient and effective means of modeling
the rotor, as is discussed in greater detail later. The numerical algorithm is briefly
outlined below.

The solution technique employs an implicit, approximately-factored, non-iterative
method developed by Beam and Warming [42]. Explicit methods suffer the disadvan-
tage of having a severe restriction on time step size in order to maintain stability. This
is particularly acute for Navier-Stokes solutions where, because of the relatively small
scales associated with resolving the boundary layer, the partial differential equations
are very stiff. Often, the steady-state solution is of principal interest, so being able to
use large time steps to accelerate the rate of convergence is very important. Implicit
methods are stable for relatively large time steps even for highly nonlinear equations
such as the Navier-Stokes equations.

A first-order accurate implicit time integration scheme is selected to march the
solution of the unsteady Navier-Stokes equations in time. A second-order accurate (or
higher) scheme is not used as it would necessitate saving the solution from previous

time levels, resulting in a significant increase in the computer memory requirements.
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The method, as used here, already requires considerable memory for 3-D computa-
tions. Applying, then, to Eq. 4, the first-order accurate numerical time integration
method referred to as the implicit (or backward) Euler scheme (not to be confused

with the “Euler” fluid dynamic equations) yields

(18)

,. A QER  gFml  aGntt 1 96
n+l n —e——t | =
¢ Q+h(as+an+6¢ Reac)”

where A is the time step, n + 1 is the time at which Q is desired, n is the previous
time level at which Q is known everywhere, and or = Q(nh)

Since the flux vectors E, F', &, and (3, are nonlinear functions of Q, then Eq. 18 is
nonlinear in Q™. In order for the solution method to be non-iterative, so as to limit
the computational effort to a manageable level, the nonlinear terms are linearized in

time about C:?" by a Taylor series expansion such that

EM = B+ AMAQT+0 (1Y)

= fr 4 BrAQ + 0 (B (19)
Gl = GrH+CMAQT+O (K

Gl = G+ MPAQ+0 (B?)

Note that AQ® = Q™! — Q™. Also, A", B”, C"*, and M™ are the flux Jacobian

matrices given by:

ar= 9L g JOF o 0G4 9G (20)
oQ oQ oQ oQ

where the symbol ¢ *’ has been omitted from the flux Jacobian matrices for simplicity.
Expressions for these matrices can be found in Ref. [43].

In the Beam and Warming method, the alternating direction implicit (ADI) al-
gorithm replaces the inversion of one huge matrix — which would be prohibitively
expensive to compute — with the inversions of three block tridiagonal matrices, one
for each direction. Efficient block tridiagonal inversion routines exist, making this
algorithm a viable solution technique. Substituting the linearizations of Eq. 19 into

Eq. 18 and appljfirig the Beam-Warming approximate factorization yields
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[ + iy h8¢A™ — &y Dyl¢] [ + iy h6,B™ — iy Dyl,]
(1 + 4, h6,C™ — iy hRe 6T~ M — i Dyl¢] AQ
= —iyh [§E" + 6,F" + §,G" — Re™' 6,7
iy [Dgle + Dly + Deld] Q" (21)

where I is the identity matrix. Dy and Dg are, respectively, the implicit and explicit
artificial dissipation terms required for numerical stability; they are discussed in more
detail later. The significance of the integer 1, is discussed below. Also, § is a second-
order central difference operator.

The algorithm is first-order accurate in time and second order-accurate in space.
The validity of using a first-order accurate (in time) scheme for unsteady computa-
tions is justified later in this section. The reasons for selecting second-order accurate
differences for the spatial derivatives are outlined in the last section of this chapter.
The equations are solved in “delta form” where AQ" = Q"“ - Q". The left hand
side of Eq. 21 is called the “implicit” part and the right hand side the “explicit” part
of the algorithm. This is a useful formulation because, for steady-state solutions,
AQ" — 0, and the solution is independent of the choice of implicit operators on the

left hand side of Eq. 21. In the above notation,
[ + ik 6. A" AQ™ = AQ™ + iyh & (A"AQ")

Note that the central difference operator § acts on A"AQ", not on just A™.

In Ref. [34], Benek, Buning, and Steger discuss a new 3-D grid embedding scheme,
which they refer to as a “chimera” scheme after the Greek mythological creature that
possessed several incongruous parts. This technique allows for solutions of multiple
overlapping grids. An embedded mesh introduces a “hole” into the mesh in which it
is embedded. The grid points that lie within this “hole” can be excluded (“blanked”)
from the solution of the encompassing mesh. Interpolation between overlapping grids
is used to specify boundary values for the solution of each grid. The solution is
performed alternately on each mesh. Since only one global mesh is defined for the

computations performed in this study (refer to Chapter 3), the grid interpolation
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portion of chimera is not required. The blanking capability for selected regions of the
computational domain, however, offers a unique and effective means of modeling the
rotor and also the tangential jet on the wing surface. The specific details describing
how the rotor and jet are implemented in the computation are discussed in Chapter 4.
Additional descriptions of the chimera method can be found in Refs. [44,45] where
applications to moving grids are described, The analysis in this chapter demonstrates
how the blanking feature is implemented in the basic LU-ADI algorithm.

The blanking feature of the chimera scheme requires that an integer 7, be defined
and assigned a value of zero or one at every grid point. Equation 21 gives the imple-
mentation for the Beam-Warming method. If i, = 0, the AQ" at this grid location
becomes zero and the solution at this point remains unchanged. Values of the flow
parameters are updated explicitly using a separate analysis. In the case of the rotor,
for example, a momentum theory/blade element analysis is applied at the blanked
rotor grid points (refer to Chapter 4). If 1, = 1, the location is not blanked and the
implicit treatment of the solution remains unchanged.

Each ADI operator forms a block tridiagonal matrix. Most of the computational
effort involved in an implicit method such as the one outlined above is associated
with the inversion of the block tridiagonal matrices. The computational efficiency
can be enhanced significantly by applying a matrix diagonalization introduced by
Pulliam and Chaussee [46]. In this way, the matrix in each of the three directions
can be reduced to a scalar tridiagonal. Their approach is based on the fact that
the flux Jacobian matrices A, B, and C each have real eigenvalues and a complete
set of eigenvectors. This means that the flux Jacobians can each be diagonalized by

similarity transformations as indicated below:
Ay = T{IATe, Ag = Tn’lB T, Ac= T('IC T; (22)

where, for simplicity, the superscript n has been dropped. A4, Ag, and Ac are
diagonal matrices containing the eigenvalues of matrices A, B, and C, respectively.

The elements of the diagonal matrices are the characteristic speeds of the flow. In
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the transformed coordinate system, the matrix A4, for example, is given as

(U 0 0 0 0 ]
0 U 0 0 0o
Aa=|0 0 U 0 0 (23)
00 0 Utef2+8+8 0
0 0 0 0 U—a\/m-

T¢, T,, and T; are similarity transformation matrices. Expressions for the other
diagonal matrices and the transformation matrices can be found in Refs. [46,47].
In the ¢-direction, for example, the Beam-Warming ADI operator can be written

in the diagonal form as

[I + 13 h6£A — 1 D]I{]
= TeT" +inh 8 (TeAaT ) — iy Te Dile T¢
T [+ iy Ay — in 82| Ty (24)

where second-order implicit smoothing has been prescribed. The implicit smoothing
factor €; is the product of a user-specified constant K, the time step h, and the spec-
tral radius o4 (maximum of the absolute values of the eigenvalues) of the matrix A,
le. e = K1 hoy.

Moving T, and Tf_l outside of the difference operator é¢ introduces an error which
renders the method (at best) first-order accurate in time [46]. For steady-state calcu-
lations, where the right hand side of Eq. 21 goes to zero as AQ™ — 0, the converged
solution obtained using the diagonal algorithm is identical to that obtained from the
original Beam-Warming ADI scheme since the right hand side is the same for both
methods. For unsteady calculations, however, the Pulliam-Chaussee diagonalized al-
gorithm introduces the possibility of nonconservative errors in the time varying part
of the solution. Shock speeds, for example, may be incorrectly computed. This,
however, should not be a significant problem in the current application. Shocks, if
they occur at all in the tilt rotor ﬂowﬁeld, are located on the upper surface of the
rotor blade tip region. In the current formulation though, the rotor is modeled as an
actuator disk (see chapter 4) where the detailed flow about each blade is not com-

puted anyway. In addition, Pulliam and Chaussee, in Ref. [46], indicate that, based
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on numerical experimentation, their method is applicable to unsteady flows without
shocks. Also, Guruswamy [48,49] obtained accurate results for both unsteady Euler
and Navier-Stokes aerodynamic and aeroelastic calculations using the diagonalized
form of the Beam-Warming method.

Fujii, Obayashi, and Kuwahara [28,29,30] introduced a further modification to
the left hand side operators that reduces each tridiagonal matrix — obtained after
the diagonalization described above — to a product of a lower and an upper bidi-
agonal matrix, thereby further reducing the computational effort. This is possible
by employing a flux vector splitting technique and by using a diagonally dominant
factorization. These modifications are outlined below.

The central differencing in Eq. 24 is decomposed into two one-sided differences
using the flux vector splitting technique of Steger and Warming [50]. The £-direction

operator becomes:

(14 iy h6gA =iy Dile] = Te [T +1iy VeAd + iy AcAz] T (25)

where

A% = g(AA 1AL £ L T (26)

and V¢ and A, are backward and forward differences, respectively. A} contains all
the positive eigenvalues and A} contains all the negative eigenvalues, of the diagonal
matrix A4. For numerical stability, the positive-moving characteristics (eigenvalues)
are backward differenced, and the negative-moving characteristics are forward dif-
ferenced. Two-point, first-order accurate differencing is used for the backward and

forward differences. They are, respectively,

VeAh = AL —AL
Aghy = Ay, — Ay (27)

J+1

where the subscripts ‘j—17, ‘5°, and ‘j+1’ are the grid point indices in the -direction.
The inverse of the Jacobian J! found in Eq. 26 is evaluated at the central point ‘;’.
Substituting Eq. 27 into Eq. 25 and re-arranging terms, the £-direction operator
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becomes

= T |=i AL +1+i (A - A3) +4 A7, [T (28)
~ ~— N _—— A
Ly Dy Ua

= T¢[La+Da+UAT!

where L4, Dy, and Uy are lower bidiagonal, diagonal, and upper bidiagonal matrices,
respectively.

Diagonally dominant factorization, first suggested by Lombard et al. [51], yields
La+Ds+Us=(La+Da)D3 (Da+Us)+0 (h?) (29)

The second-order error, that results from the above factorization, is consistent with
the previous approximations. Equation 29 can be shown to be true by examining
Egs. 26 and 28 and noting that L, and U, are of order h, and D, is of order 1.
Finally, the é-direction ADI operator becomes:
Te [La+ Da] [D3'(Da+Ud)| T;!
<L

~ o

oy W
lower bidiagonal upper bidiagonal

=Te [T+, (VeAh = A7) T +inh1Aal™ [T+6 (BeAZ + AT (30)

A similar procedure is followed for the - and (- directions. The matrix inversion
for each direction has been reduced to ar product of a lower and an upper scalar
bidiagonal matrix. It is implemented by performing a forward sweep followed by a
backward sweep. o -

The viscous flux Jacobian matrix M is not simultaneously diagonalizable with
the flux Jacobian C' [43]. The (-direction operator of Eq. 21, therefore, must be
modified. To retain the diagonalization in all three directions (and not incur the
computation penalties associated with not simplifying the block tridiagonal operator
in the (-direction), the viscous flux Jacobian M is simply neglected. Neglecting the
matrix M does not affect the converged steady-state solution (AQ™ — 0) because the
right hand side of Eq. 921 remains runchzrxnged:. For the diagonalized Beam-Warming
Method without flux vector splitting, Pulliam {47] found that neglecting the viscous
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flux Jacobian M did net affect the stability or convergence rates for steady-state so-
lutions, when compared to a method where the viscous flux Jacobian was retained in
an additional implicit factor on the left hand side of Eq. 21. Pulliam and Steger [52]
also verified this method for 2-D steady viscous flows and convecton dominated un-
steady flows. Guruswamy [49] computed the three-dimensional unsteady viscous flow
about a semi-infinite wing undergoing pitch oscillations, using the diagonalized Beam-
Warming method. His results compared well with measured data. Obayashi and
Guruswamy [53] computed the unsteady shock-vortex interaction on a flexible delta
wing. They used the LU-ADI solution algorithm similar to that described previously.
Instead of employing central differences and explicit artificial dissipation, however,
they used upwinding to compute the inviscid fluxes. The numerical results showed
fairly good agreement with experimental data for this difficult test case. The above
examples, then, serve to validate the basic flow algorithm employed in this current
work, for application to unsteady viscous flows. One can confidently expect the
method to be capable of computing the unsteadiness of the tilt rotor flowfield — in
particular, the vortex shedding from the wing leading and trailing edges.

Fujii and Obayashi [29] found that to ensure adequate stability of the thin-layer
viscous terms when using the split flux vector approach, it was required to add a
small amount of additional dissipation to the split diagonal matrices A as shown

below.
A% = g(AC LAe) + I e £ ol (31)
where
2u (242 +(2)
v= RepAC
where, in the computational domain, A = Anp=A{ =1.

Finally, the present scheme can be summarized as follows,
Te (LA + DA) Dzl (DA —}-UA) T{lTn (LB + DB) DEI (DB + UB) Tn—lT(
(Lo + Dc) Dg' (Do + Ug) T AQ™
A A Pad 1 A
= —iyh [565" NP A3 N E&G’,’,‘] (32)
—is [Dgl¢ + Dl + Del] Q"
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Analytical expressions for 7;'T, and T;;'T; and their inverses (see Ref. [46]) can be
used to reduce the computational effort.

It is evident from the above equation that the inversion process has been reduced
to one forward scalar sweep and one backward scalar sweep in each direction, and
simple matrix multiplications.

This section has outlined the features of the LU-ADI algorithm developed by
Fujii, Obayashi, and Kuwahara [28,29,30]. Also described is the implementation of the
solution blanking feature within the basic LU-ADI numerical scheme. The algorithm,
in its current form, provides an effective means of specifying flow parameters to model
flowfield discontinuities in the interior of the computational domain. As is discussed
in more detail in Chapter 4, the influence of the rotor and of the tangential wall jet

are modeled using this approach.

2.5 Artificial Dissipation

A linear, constant coefficient Fourier stability'analysis (assumes periodic boundary
conditions) for the three-dimensional hyperbolic wave equation shows a mild, uncondi-
tional instability for the Beam-Warming factored algorithm [47]. Artificial dissipation
(also called “smoothing”), both explicit and implicit, is required to render the scheme
stable. The amount required is small relative to the physical, viscous dissipation. In
the current implementation of the solution algorithm, second-order smoothing in the
form of two one-sided differences is incorporated in each left hand side operator as
shown in the previous section (see Eqs. 25 and 26). Implicit artificial dissipation
serves to increase the stability bound imposed by the explicit artificial dissipation,
and to enhance convergence.

The most common procedure for the explicit, right hand side of Eq. 21 is to
add fourth-order artificial dissipation. This is required to dampen high-frequency
growth thereby controlling nonlinear instability [43]. Employing only fourth-order
dissipation, however, can produce non-physical oscillations near shocks [47] or at
other discontinuities that may occur in the flowfield, such as at the edge of the

rotor slipstream or across the rotor in computations of the tilt rotor flowfield. The
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increased damping offered by second-order dissipation can be exploited to eliminate
the overshooting and undershooting at flow discontinuities. Second-order smoothing,
however, if applied everywhere, introduces excessive dissipation. For the right hand
side of the equation, therefore, a nonlinear combination of fourth-order and second-
order smoothing is employed. The dissipation model proposed by Obayashi, Fujii,
and Gavali [54] is used here. The smoothing is treated similarly in each coordinate

direction. As an example, the ¢-direction smoothing term of Eq. 21 is given by

Dl = Y {(1 ~ ;1) (ETE)”; AJO™ — B, Veh [(‘f—)ﬁl AfJQ"]} (33)

where

® = matrix containing the flux limiter functions
¢ = Kghoy

Kg = input constant

o4 = spectral radius of flux Jacobian matrix A

= WUlte/E+E+E
All parameters evaluated at j + 1 are simply arithmetic averages of the values at
j and j + 1. The matrix ¢ is made up of elements whose values depend on the
local flow gradients. For a relatively smooth variation of local flow properties, the
corresponding element of ® would take on a value near one so that only fourth-order
dissipation would be used. Conversely,. for large flow gradients, the element of ®
would be near zero thereby allowing the second-order terms to dominate. For further
details about this explicit smoothing and for definition of the elements of the matrix
®, see Ref. [54]. Note that the constants K (see Eq. 24) and Kg, the user-specified
inputs for the implicit and the explicit dissipation, respectively, are selected to have

the minimum values commensurate with obtaining consistently stable solutions.

2.6 Additional Features

The numerical computation of the flux derivatives and transformation metrics us-
ing central differences for 3-D problems introduces small errors due to violation of

flow conservation. Typically, freestream values of the fluxes are subtracted from the
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governing equations to achieve perfect freestream capture [43]. In the present hover
computation, however, where the flow at the far-field boundary is non-uniform and
near zero, an approach suggested by Vinokur [37] and implemented for plume flows
with non-uniform freestream by Obayashi [55] is more appropriate. By computing
the metrics and+Jacobian using a finite volume approach over a distance of two grid
cell widths in each direction, and by evaluating the flux derivatives using second-
order accurate central differencing, freestream preservation is ensured. That is why
a second-order accurate differencing is selected for the central difference operator on
the right hand side of Eq. 32. To ensure freestream preservation, then, for the cur-
rent application of a tilt rotor in hover, the method is limited to second-order spatial
accuracy. In order to regain solution accuracies comparable to those obtainable with
the original Fujii and Obayashi method [29,30], which employed fourth-order accu-
rate central differences for the inviscid terms together with freestream subtraction,
a greater number of grid points is required, particularly in the regions of large flow
gradients.

To further enhance convergence speeds for steady-state calculations, Fujii and
Obayashi incorporated a space-varying time step size h. This modification can be
very effective for grids that have a wide variation in grid spacing. By scaling A with
grid spacing, a more uniform local Courant number (ratio of local time step to grid
cell width multiplied by the characteristic velocity) can be maintained throughout
the flowfield. Since the local transformation Jacobian J scales with the inverse of

grid cell volume, the following has been found to work well (refer to Ref. [52]):

b= hlref
1+VJ

where h|ref is a fixed, user-specified time step. This option is employed for the rotor
alone computations (discussed in Chapter 5) because of the steady nature of the
solution obtained using the actuator disk model for the rotor.

The numerical method was extended in the current work to incorporate several
other features. The capability to model two-dimensional flows was added, as de-
scribed in Chapter 4. This proved useful in developing new grids and boundary con-

ditions. Although not used in the current tilt rotor model, a multiple zone capability,
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scalar tridiagonal inversion in all three coordinate directions, implicit treatment of the
¢-direction periodic boundary condition using a periodic scalar tridiagonal inversion
algorithm, and constant coefficient explicit smoothing were all implemented. Some of

these additional features may be useful in future applications of the computer code.
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Chapter 3

Grid Generation

3.1 General Comments

Grid generation is a very important aspect of computational fluid dynamics. The
grid is the assembly of points at which the numerical solution to the relevant partial
differential equations is found. To maintain solution accuracy, the grid should possess
a smooth distribution of points (see Ref. [56]). Also, the distribution of points in the
grid {or mesh) must be compatible with the fluid dynamics equations being solved
and the particular flowfield.

As discussed in Section 2.2, the thin-layer approximation is made so as to limit
the computational requirements to a manageable level. The viscous fluxes normal to
the surface are dominant. In order to resolve this important contribution, the grid
spacing must be very fine near, and in a direction normal to, the surface. Grid spacing
can be much coarser along the surface where the far less significant tangential viscous
fluxes need not be resolved. In addition, grid points must be clustered in regions
where relatively large flow gradients are anticipated.

For the tilt rotor computation, three-dimensional grids are generated by stacking
vertical, parallel, two-dimensional grids at spanwise locations along the wing and
beyond the wing tip. A Poisson equation solver [57] is used to create each of the

smoothed 2-D grids, clustering the points near the airfoil and the rotor. O-grids
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are selected (over C-grids and H-grids) as they completely encircle the airfoil cross-
section. They offer the most desirable grid point distribution for this type of flowfield
where large flow gradients occur around both the leading and the trailing edge.

For the wing/rotor interaction computations, a grid with a flat region in the plane
of the rotor is desired so as to enable an easier and more accurate implementation of
the boundary conditions that correspond to the rotor. Figure 5 shows two views of
a typical 2-D grid at a spanwise station inboard of the wing tip. Although only one
zone, the smoothing for each 2-D grid is actually carried out independently on two
separate meshes to obtain the desired grid spacing in the location of the rotor: (1)
an inner grid whose inner boundary is the airfoil surface and whose outer boundary
is the circumferential grid line containing the flattened upper portion used to define
the rotor location, and (2) an outer grid enveloping the first grid and extending to a
circular outer boundary 15 wing chords from the airfoil.

‘The V-22 wing is of constant cross-section with a squared wing tip. The mesh
is generated for a wing flap deflection of 67°. This flap angle was found to be
near-optimum for minimum download in flight tests of the XV-15 tilt rotor aircraft
[4]. This angle is selected also because considerable experimental data exists from
0.658-scale model tests of the V-22 wing/rotor at this flap deflection (see Refs. [9,10]).
To minimize discontinuities in the 3-D grid, the wing cross-section is gradually re-
duced to a point on the outer 3% of the wing semi-span. This gives rise to a singular
line outboard of the wing tip. This and other features of the grid can be better appre-
ciated in Fig. 6, a perspective, cutaway view of portions of the 3-D grid. The vertical
grid plane in the foreground is the plane of symmetry. To facilitate the specification
of the symmetry boundary conditions (see Section 4.2), the mesh actually extends
one grid plane inboard of the plane of symmetry. The outer edge of the rotor disk
is superimposed on the grid to help visualize the position of the rotor with respect
to the wing. The rotor lies in a plane that is about one wing chord above the wing.
Figure 7 is a cutaway view showing the outer boundaries of the grid. More details of
the grid are presented in Section 3.3. '

Implicit in the use of a plane of symmetry is the assumption that the flowfields on

either side of the vertical centerline-plane are a mirror image of each other. Although
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the computational effort is greatly reduced relative to analyzing both halves of the
tilt rotor configuration, it is important to note that the plane of symmetry, for this
current computational problem, only approximates the actual flowfield. As mentioned
in Chapter 1, the flowfield generated by the rotors is unsteady and highly complex.
Although the actual rotors are physically cross-coupled (i.e. interconnected in the
event of a power failure in one engine), finite tolerances in the mechanical system
result in slight variations in rotor blade position and pitch angle between the two
rotors. Also, blade flexibility and the impossibility of manufacturing identical rotor
sets, ensure that the rotor flowfields generated by each rotor are not identical. In
addition, slight differences in the manufactured wing affect the vortex shedding at
the wing leading and trailing edge. It is highly unlikely, then, that the separated
flowfields, also influenced by non-identical rotor flows, are perfectly symmetric about
the vehicle centerline. The local, instantaneous differences between the flowfields on
either side of the vehicle center may or may not be significant. It is difficult to assess
the validity of the symmetry assumption. It is assumed in this study, however, that
the time-averaged effects of the actual flow assymetries are negligibly small. In any
case, the current approach of time-averaging the unsteady effects of the rotor onto an
actuator disk (see Chapter 4), is probably a greater limitation of the current tilt rotor
model than the plane of symmetry. The plane of symmetry used in the numerical
computations, however, is definitely more appropriate than the image plane used in
the experimental studies (refer to Ref. [2], for example). The image plane provides a
plane of symmetry of only finite dimensions. Additionally, it has the undesired effect
of providing a surface for viscous effects, in the form of boundary layer growth, to
be introduced. This may affect the flowfield; in particular, the recirculation fountain.
The actual flow at the vehicle centerline may experience some vorticity generation
due to assymetries in the flowfield. The shear stresses due to the interaction of free
flows, however, would be different from those produced in the boundary layers which
develop on an image plane.

To obtain the desired clustering of 2-D grid planes along the wing and beyond the
wing tip, an exponential type of stretching is employed. If a distribution of N points

is desired along a curve of specified length S, and the arc length between the first two
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points is specified to be AS, then an expression for the total length can be written

as (refer to Fig. 8} :
S = AS+aAS+a’AS+a®AS+---
N-2
= AS }: o*

k=0
Defining a function f where
f=8-AS Z o*

k=0

then an iterative root finding procedure (Newton-Raphson method) is used to deter-
mine the value of « that satisfies f = 0 within a desired tolerance. This stretching
function can easily be extended to a distribution of points with exponential stretching
in both directions, i.e. a different AS is specified at both ends of the interval.

To generate a mesh for a 2-D calculation, three identical 2-D grids are stacked
parallel to each other. This is required because the Navier-Stokes code employs a
second-order accurate 3-point spatial numerical differencing. The computational re-
sults are then referred to as “pseudo 2-D” as they are essentially 2-D in character
although they are generated by a 3D method. This is made possible by proper
application of symmetry boundary conditions at both ends of the mesh (refer to Sec-
tion 4.2). Considerable use was made of this pseudo 2-D capability in the development

of the grids and rotor model.

3.2 [Elliptic Grid Generation

To ensure smooth grid point distributions on the interior of a 2-D mesh, an elliptic
grid solver is employed. The elliptic grid generation scheme was first proposed by
Thompson, Thé,mes, et al. in Refs. [58,59]. It requires specification of grid point
locations along the boundary — in this case, both the inner boundary (airfoil surface)
and the outer boundary. The solution algorithm is outlined below. '

The Poisson equations are used to generate a boundary-fitted, curvilinear 2-D grid:

boe t by = PED)
New +TMyy = Q6,7)
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where (£, 7) represent coordinates in the computational domain, (z, y) represent coor-
dinates in the physica1 domain, and P and @ are source terms which control the grid
point spacing in the mesh interior. The computational domain is rectangular and the
grid points within it are evenly-spaced. To simplify the evaluation of the derivatives
and to ease the specification of the boundary conditions, the above equatidns are
transformed to, and solved in, the computational domain. To do this, the roles of the

independent and dependent variables are interchanged, and the equations become

azee — 2BTen + VT = —J° (Pze+ Qzy)
ayee — 28Yen + Yy = —J° (Pye + Qun) (34)
where
o = wtel
B = z¢zy+ yeyn
7 o= Tty
J = zeyn — Toy;

All derivatives are approximated using standard second-order accurate finite dif-
ferences. The spatial increments A¢ and An can, without any loss in generalization,
be assumed to be constant everywhere and equal to 1. The grid point locations on
the boundary must be specified, and an initial guess for the interior grid values must
be made.

This method with P = @ = 0 provides no control over the grid point spacing near
a boundary. The grid points tend to be pulled away from the surface by the Laplacian
elliptic solver. Sorenson and Steger [57] developed a technique for defining P and Q
such that the angle at which the ¢ = constant grid lines intersect the boundary, as
well as the distance between the boundary and the first off-boundary grid point on
these grid lines, can be specified. In this way, grids having a very fine grid spacing
near surfaces (for viscous calculations) can be generated. Also, orthogonality of the
grid at the boundaries can be specified, if desired.

Any number of standard relaxation schemes can be used to solve the system of

two Poisson equations. Two different solution algorithms were tried during the course
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of this work. The first, an alternating direction implicit (ADI) scheme, is constructed
using approximate factorization to convert the solution process to two tridiagonal
matrix inversions. The solution method is discussed in more detail in Ref. [60]. It
worked well for cases where the airfoil surface had no discontinuities (except for the
trailing edge). Convergence difficulties were experienced for configurations where the
flap was deflected resulting in surface discontinuities at the flap/main foil junction
both on the upper and the lower surface. These unresolved problems necessitated
the use of an alternate method. Sorenson [61] developed a solver based on the SLOR
(successive line over-relaxation) scheme. This method was found to produce converged

solutions regardless of the flap angle.

3.3 Grid Detalils

To ensure proper resolution of the thin tangential jet for blowing calculations, a
thin region of the grid surrounding the wing surface is defined algebraically. The
first 7 points in this region are equi-spaced and extend along a grid line normal to
the wing surface to a distance 0.002 of the wing chord (c¢). This corresponds to
a typical blowing slot height used in previous experiments by Felker and Light [2].
The remaining 6 points are stretched exponentially along the normal to a distance
0.006c from the wing surface. Although the number of points prescribed in the thin
region surrounding the airfoil is somewhat arbitrary, there is a sufficient number to
ensure adequate resolution of the velocity profiles in the jet and in the boundary
layer. The same grid is used regardless of whether blowing is applied or not. The
grid orthogonality at the wing surface contributes to increased accuracy in defining
_ the boundary conditions required for the Navier-Stokes solution. Also, it provides
for an easier and more appropriate implementation of the tangential jet (for more
details, see Chapter 4). The outer edge of this thin algebraically-defined region which
surrounds the airfoil is defined as the inner boundary to the Poisson grid generator.
Orthogonality of the grid lines at this inner boundary is specified in the definition

of the P and Q source terms of the Poisson equations. Figure 9 shows a blow-up of
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the grid in the region of the leading edge at a typical wing cross-section. The high-
lighted grid line corresponds to the outer edge of the algebraically-defined region and
the inner boundary of the Poisson-smoothed grid.

To avoid problems associated with resolving the flow around the V-22’s blunt
trailing edge (0.32%c thick), the airfoil was extended to a point at the trailing edge
and re-scaled to its original chord.

As previously mentioned, the V-22 wing has a constant cross-section with a
squared wing tip. To minimize discontinuities in the grid, the wing cross-section
is gradually reduced to a very small circle (having radius equal to 0.0003c), over the
outer 3% of the wing semi-span. Five parallel 2-D grid planes are used to define this
tip region. Although this is insufficient to accurately resolve all the details of the
flow around the tip, it is deemed adequate for the present study. Further grid de-
velopment in this region should focus on modeling the presence of the nacelle which
is neglected in the current work. Outboard of the wing tip, the singular line (ac-
tually an extremely slender cylinder of grid points) extends to the outer boundary
in the spanwise direction. At each spanwise station outboard of the tip, the first
thirteen n = constant grid lines are defined to be concentric circles. This improves
the accuracy of the specification of the boundary conditions on the singular line (see
Chapter 4) contributing to greater solution stability.

Two horizontal layers of grid points are used to define the influence of the rotor
(see Chapter 4). It was found by numerical experimentation that placing these two
planes of points 0.01¢ apart yielded accurate and stable solutions.

Except where otherwise stated, the computations of wing/rotor interaction dis-
cussed in Chapter 5 are performed on a grid whose dimensions are 73x47x70. There
are 73 points that define the airfoil cross-section in the £-direction. Forty-seven 2-D
grid planes are stacked in the spanwise 5-direction, 23 of which are on the wing. Sev-
enty points stretch from the wing surface to the outer boundary in the (-direction.
Forty-six of these points extend from the wing surface to the plane of the rotor. The
grid extends to approximately 15 wing chords (over 3 rotor diameters) normal to the
wing surface and beyond the wing tip.

A computer program has been developed to create the three-dimensional grid
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described above. Changes in the number of grid points and in the grid spacing are
easily made. Grids for wings with a different airfoil cross-section can be generated in
a straight-forward manner. Different flap deflections can also be modeled simply by
redefining the airfoil geometry.

Accurate modeling of the gap between the main foil and the flap is a difficult
task and would require further development of the gridding program. In addition, it
should be noted that modeling the geometry of the slot would increase considerably
the number of grid points, perhaps exceeding the available computer memory limits.
As mentioned in Chapter 1, the fuselage, tail, and nacelle of the V-22 are not mod-
eled in this study. They are complicated geometries which must be modeled using
multiple grid blocks. Although the Navier-Stokes code has been extended to multiple-
zone applications, development of these complicated 3-D zonal grids ensuring smooth

transition between blocks, is beyond the scope of this work.
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Figure 5: Cross-sectional cut through mesh showing the concentration of grid points
around wing and rotor.
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\

Figure 6: Cutaway view of mesh showing wing and rotor locations.
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Figure 7: Cutaway view of mesh showing the outer boundaries of the grid.
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Figure 9: Blow-up of the grid in the region of the leading edge at a typical wing
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Chapter 4

Boundary Conditions

4.1 General Remarks

The finite difference solution of the Navier-Stokes equations requires specification of
boundary conditions on all domain boundaries. In the numerical method emplbyed
in this study (described in Chapter 2), the boundary conditions are applied explicitly,
i.e. the flow variables at the boundaries are evaluated using the most recent solution.
This permits greater flexibility in applying the boundary conditions to a variety of
geometries and flow situations. At all grid points located on the mesh boundaries,
each of the five flow parameters that make up the vector of conserved quantities Q
must be updated explicitly - either by specifying them or by extrapolating them from
computed interior values. Referring then to the definition of Q in Section 2.2, the
density p, the mass fluxes from the three momentum equations pu, pv, and pw, and
the total energy per unit volume e must all be updated at each time step.
Determination of the boundary conditions representative of a lifting rotor require
a separate analysis and will be discussed in a later section. First, those boundary

conditions not pertaining to the rotor will be described.
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4.2 Non-Rotor Boundary Conditions

At grid points on the wing surface, for viscous (Navier-Stokes) calculations the
no-slip boundary condition is imposed, i.e. all components of velocity are set to
zero (u = v = w = 0). Inviscid computations can also be performed using the present
computer code by omitting all viscous terms, i.e. the G, flux vector, and by applying
the inviscid boundary condition on the wing — zero normal velocity. In the compu-
tational domain, this condition is easily satisfied by setting the contravariant velocity
component normal to the surface, W, to zero.

The pressures on the wing surface are found by solving the normal momentum
equation (refer to [56,62]). The normal momentum equation is derived by taking
the dot product of the vector comprised of the transformed z-, y-, and z-momentum
equations, and the unit normal vector, 7. The viscous effects on the pressure at
the surface are assumed to be insignificant and are neglected (typical boundary layer

assumption).
[;v—mom i + y—mom j + z—mom ]_(;] -1 = normal momentum (35)

where

SV G GTtGE
vl Je+E+¢

From the momentum equations, it can be seen that the normal momentum equation,

at the body surface reduces to dp/dn = p, = 0. Performing the above operations,

pe (el + 6,6 + £2(2) + Py (le(_z + 1yCy +1:C2) + P (Cﬁ + C; + Cf) (36)
+ U (Czuf + Gue + Czwé) + pV (Cotty + Gy + (zwn)

= p/E+G+E =0

Evaluating the above expreséion at the surface, U and V are zero for viscous flow
calculations, p; can be approximated by second-order one-sided differences, and p;
and p, are expressed as second-order central differences. Re-arranging the equation,
and applying approximate f;ctqrization, results in an implicit solution algorithm for

p at the surface which involves two one-dimensional tridiagonal inversions — one in
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the £-direction and the other in the n-direction. Obtaining surface pressures using
the above method yields a more accurate and stable solution method than simply
using zero-order extrapolation.

Assuming adiabatic conditions at the surface (no heat flux, i.e. 87/9n = 0), and
noting from above that dp/dn = 0, then, from the-equation of state for an ideal gas
(p = pRT), the density gradient normal to the surface is also zero. The density at the
surface, then, is obtained by a zero-order extrapolation from the value at the nearest
off-body point normal to the wall. The final quantity required, the total energy per
unit volume e, is calculated from Eq. 9 using the previously-defined quantities.

Beyond the wing tip, where the airfoil cross-section collapses to a circle with very
small diameter (0.0003 of a wing chord), the values of Q on the singular line are
determined by averaging the flow properties computed at the grid locations adjacent
to and surrounding the singular line. Qutboard of the wing tip then, for each element

q of the Q) vector, and for all j from 1 to JMAX (the maximum value of ), at I =1,

JMAX
2

) — j=1 Qj,1=2
=1 = T IMAX | (37)

where j is the index in the {-coordinate direction and [ is the index in the (-direction.

As discussed previously in Chapter 3, symmetry of the tilt rotor flowfield in hover
is assumed. Therefore, to reduce the computational effort, only one-half of the tilt
rotor configuration is modeled. Two parallel 2-D grid planes located at spanwise
indices k = 1 and k = 3 straddle (and are equi-distant from) the plane of symmetry
at k = 2. The grid points in plane £ = 3 are mirrored about the plane of symmetry

to define the following symmetry boundary conditions at k = 1:

1 = P3
(pu); = (pu);
(pv), = —(pv); (38)
(pw); = (pw),

This ensures that, at the centerline, the gradients (normal to the plane of symmetry)
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of temperature and pressure are zero. The normal gradient of the velocity compo-
nents that are tangential to the plane of symmetry (u and w) is zero. The spanwise
component of velocity v is also effectively zero at k = 2.

The 3-D Navier-Stokes computer code was extended to allow “pseudo 2-D” com-
putations, i.e. computations of 2-D flowfields using the 3-D solver. This was found
useful for developing new grids and boundary conditions. Because three-point second-
order spatial differencing is used on the right hand side of Eq. 32, at least three parallel
and identical 2-D grids are required. For “pseudo 2-D” calculations, then, symmetry
boundary conditions are applied at grid planes k = 1 and k¥ = 3 using the solution at
grid plane k = 2, in a manner similar to Eq. 38. This ensures that the code effectively
sees an infinitely long wing having constant airfoil section.

The grid points of each two-dimensional O-grid line in the j-direction wrap around
the airfoil, and the first and last points are coincident at the trailing edge. This
creates a periodic boundary which extends from the airfoil trailing edge to the outer
boundary. The j = 1 and the j = JMAX boundaries are therefore coincident. In
the computational domain, however, they are at opposite ends and are coupled by

the following periodic boundary condition:

1 = (2 + GqIMAX-1)

DO | = D

qiMAX = (Q2 + qrmax-1) (39)

The periodic boundary conditions are simply taken to be the average of the flow
properties on both sides of the boundary.

On all the outer boundaries of the computational domain (about 15 wing chords
from the wing surface, for the computations performed here), either inflow or outflow
boundary conditions are specified. The flow is essentially inviscid in these far-field
regions. The Euler equations are hyperbolic partial differential equations. Applying
a method of characteristics analysis to hyperbolic PDE’s helps to determine the ap-
propriate boundary conditions for inflow and outflow boundaries. For subsonic flow
in three dimensions, four of the characteristic velocities are positive and the fifth one
is negative. For a subsonic inflow boundary, then, four independent thermodynamic

and kinematic flow properties should be specified, and one should be extrapolated
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!
from the interior of the flow domain. For a subsonic outflow boundary, on the other

hand, only one property should be specified and four extrapolated. For typical com-
putational fluid dynamic applications, where the freestream flow is non-zero, inflow
boundary conditions are applied at those grid points on the outer boundary that are
upstream of the wing. Freestream Mach number, the flow angles, and the pressure
are commonly specified and the density is extrapolated from the interior of the com-
putational domain. The outflow boundary is defined at those points on the outer
boundary which lie downstream of the wing. In the tilt rotor hover case, however,
where the flowfield is being driven solely by the rotor situated near the center of the
computational domain, it was found that treating the entire outer boundary as an
outflow boundary gives the best results. The only constraint imposed on the outer
flowfield, then, is the static pressure which is set to its freestream ambient value. All

other flow properties at the outer boundary are obtained by zero-order extrapolation.

4.3 Rotor Model

4.3.1 Approach

As discussed in Chapter 1, detailed modeling of individual rotor blades and the dis-
crete vorticity shed into the wake behind each blade, using the latest CFD techniques,
is a formidable task requiring computer resources that push the currently-available
technology. The problem is further compounded by the necessity, in this current
research effort, to also accurately model the detailed flow about the wing. The fo-
cus of this current work is the computation of wing download and not the detailed
calculation of the local flow around each of the rotor blades. The problem then is
rendered more tractable by employing a simpler model for the rotor. The rotor is
assumed to be an actuator disk, i.e. the blade loads are time- and space-averaged
over elemental areas that comprise the entire rotor disk. In the past, as mentioned in
Section 1.2.2, Clark [13] and Lee [14] employed actuator disk models in their panel
method computations of a tilt rotor in hover. Their rotor models produced results

that were representative of the actual overall flowfield features. The actuator disk
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approach to modeling the rotor neglects the unsteadiness of the rotor flow and the
influence of the shed vorticity on the rotor blades and on the wing. The impact of
these simplifications is difficult to assess. It is expected, however, that the rotor’s
time-averaged influence on the wing should be predicted quite well.

Figure 10 is a view of those points of the computational grid that lie in the plane
of the rotor. Superimposed on the figure is an outline of the wing and also the rotor
disk which has been subdivided uniformly into a number of radial and azimuthal
segments. At each elemental area on the rotor disk, an average of each of the flow
properties (the density p and the velocity components u, v, and w) is determined
from the most-recently computed solution at all points within the elemental area.
Momentum theory/blade element analysis is then applied which yields updated flow
properties. These are then specified at all grid points within the given area. This
approach allows the incorporation of the effects of blade geometry, airfoil aerodynamic
characteristics, blade twist and pitch angles, and rotor rotational speed, as described
below. In this way, the influence of the rotor can be described by distributions of local
pressure rise through the rotor and local swirl velocity. The method has similarities
with that described in Ref. [26] where source terms, added to the incompressible
Navier-Stokes equations, were evaluated using 2-D blade section characteristics, to
compute the 3-D, time-averaged, rotor flow in forward flight. A discussion of the
validation of the rotor model is presented in Section 5.2, where comparisons are made

with simple momentum theory and experimental data for a rotor alone.

4.3.2 Combined Momentum Conservation/Blade Element

Analysis

Glauert [63], McCormick [64], and Prouty [65] provide good discussions on momen-
tum conservation and blade element analyses applied to propellers and/or rotors.
These classical analyses assume that there is no slipstream contraction and that the
flow through the rotor disk has no radial component. They generally allow only ra-

dial variations of torque and thrust. The momentum theory/blade element analysis
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presented below, on-the other hand, allows slipstream contraction. A radial compo-
nent of flow is permitted although, for the purpose of evaluating the aerodynamic
forces on the rotor blades, only the axial and tangential flow components are taken
into account. Also, the method discussed below computes both azimuthal and radial
variations of torque and thrust.

Relative flow angles and resultant aerodynamic forces acting on an elemental area
of the rotor disk are shown in Fig. 11.

The swirl above the rotor disk is zero, and immediately downstream it jumps to
V;. Therefore, in the rotor plane, the swirl is assumed to be V;/2 as shown in Fig. 11.
The analysis has been generalized here to include ascending and descending flight
(i.e. Vo and, therefore, the angle ¢ are non-zero). Each elemental area dA sweeps

through an angle dy and possesses a radial width dr (i.e. dA = r dip dr).

Calculation of Local Pressure Rise across the Rotor Disk

The elemental thrust dT" acting on an elemental area dA of the rotor disk is equal to
the total load, generated by all the blades, on an annulus of the rotor disk (situated a
distance r from the axis of rotation), multiplied by the factor diy/27 which represents

the average time spent over each elemental area. This yields:
dy .
dT = Bi; (Lcos(¢ + o;) — Dsin (¢ + o)) (40)

where B is the number of blades, and L and D, respectively, are the aerodynamic lift

and drag forces produced by a rotor blade segment of width dr. The angle a; is the

induced angle of incidence, and the angle ¢ (see Fig. 11) is zero for the hover case.
From the definition of the two-dimensional aerodynamic force coefficients C; and

Cy, the blade segment lift and drag, respectively, can be written as

1
L = 5/)‘/;‘},Clcdr

1
D = —Z-pVef”Cdcdr (41)

where Vs is the effective local velocity in the plane normal to the rotor radius and
¢ is the local blade chord.
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Substituting Eq. 41 into Eq. 40,

0=t ovi B o o6+ ) - Casn (4 a)) (42
™

In the current implementation, the 2-D aerodynamic force coefficients are assumed

to be functions of angle of incidence a and the Mach number M, i.e.

Cr = fl (aaM)
Ci = faley M) (43)

They are determined from a look-up table comprised of actual Boeing wind tunnel
test results for the four different airfoil sections that define the V-22 rotor blade
(obtained from Boeing’s C81 airfoil deck of XN-series airfoils).

Note that from Fig. 11, @ = 8+ 8 — (¢ + ;) where 8 is the local blade twist
relative to that at the 75% span location, and £ is the blade pitch angle setting. A
simple iterative root finding scheme is employed at each time step to determine g for
a desired thrust coefficient C7. In other words, at each time step, the rotor blade
pitch is trimmed to obtain the specified trim thrust coefficient. This procedure is
outlined in a later section.

At each time step of the computation, the results from the most current Navier-
Stokes solution are used to obtain the flow angles, velocity components, and the
density at the rotor disk. In particular, the induced angle of incidence a;, the effective
velocity V,ss, and the density p are determined. As previously mentioned, local
averages of the required flow properties are taken by summing the values of all the
points within a given elemental area. The lift and drag coefficients associated with
each elemental area are obtained using the table look-up, by inputting the computed
average local angle of incidence and Mach number. The elemental thrust dT is then
computed from Eq. 42. The local pressure rise across the rotor disk Ap, which is used
as a boundary condition for the Navier-Stokes solution, is then easily obtained from

dT

Ap =~

(44)
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Calculation of Local Swirl Velocity at the Rotor Disk
Referring to Fig. 11, the elemental torque d@) acting on an elemental area dA is:
dQ = Bg—f (Lsin(¢ + o)+ Dcos(¢+ o)) (45)
Substituting Eq. 41 into Eq. 45,
dQ = %p V2, Be %dr (Crsin (¢ + o) + Cacos (¢ + ai)) (46)

Another expression for dQ can be derived by considering the conservation of an-
gular momentum. The torque produced by an elemental area of the rotor disk on the
fluid is equal to the rate of change of angular momentum (the mass flow multiplied

by the net circumferential change in velocity multiplied by the moment arm 7):

dQ = \p(rdtpdrw + V°°), *l/f/ r (47)
mass flow velocity change

where V, is the component of the local induced velocity normal to the rotor disk and,
for hover, V, = 0. Given d@) computed from Eq. 46, the tangential (or swirl) velocity
V; can be obtained from Eq. 47.

Now that the pressure rise Ap and swirl velocity V; have been computed, they are

applied as “interior boundary conditions” as described below.

Blanking Technique for Rotor

Because rotor thrust is a function not of absolute static pressures, but of the change in
pressure Ap through the rotor disk, two adjacent horizontal layers of grid points are
used to specify the desired flow conditions. The total effect of the rotor is assumed to
take place between these two layers of rotor grid points. The two horizontal planes of
grid points which lie closest to the plane of the actual rotor and which lie within the
rotor radius are defined as rotor grid points. These points are blanked out of (excluded
from) the implicit solution process, and their flow values updated explicitly. This is
done by setting the blanking parameter 7, (see Chapter 2) to zero for all rotor grid
points. For all other grid points in the computational domain, i, is set to one. The

lower and upper layers of rotor grid points (separated by a vertical distance of only
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0.01c) are referred to, in the discussion below, as L and L + 1, respectively. These
two layers of points are seen superimposed on each other in Fig. 10.

An approach similar to that used in Ref. [66] is adopted here to define a consistent
set of boundary conditions for the rotor. Consideration of the characteristic velocities
of the flowfield indicates that for a subsonic inflow boundary, four flow properties must
be specified and one can be extrapolated from the interior solution domain.

The rotor grid points of layer L are considered to be an inflow boundary. This
means that the flow is viewed as moving from the region above, into the region below,
the rotor. Ideally, the direction (flow angles) of the flow through the rotor would be
specified from measured experimental data or, alternatively, from a complete Navier-
Stokes solution of the rotor. In the absence of this information, which does not
exist, the velocity components are specified as described below. The z-component
of velocity is a combination of the u velocity at L + 1 plus the component of swirl
in the z-direction. Similarly, the y-component of velocity is a combination of the
v velocity at L + 1 plus the component of swirl in the y-direction. They are given
below assuming a counterclockwise rotation of the rotor as seen from above (as for

the V-22):

uly = ulp41 — Vising

vt = vlp41+ Vicosd (48)

The angle 9 is the angular location of a given rotor grid point with respect to a
horizontal line extending aft from the rotor axis of rotation (see Fig. 10). The swirl
velocity V; is obtained from the analysis described previously.

The pressure at the L layer of rotor grid points (inflow boundary) is defined to
be the pressure immediately above the rotor plus the rotor-induced pressure rise Ap

computed in the previous analysis:

ple = ple1 + Ap (49)

The final quantity to be specified is the density. Because of the low subsonic Mach
number flow induced by the rotor in hover, the flow is essentially incompressible.

The density can, therefore, be assumed to be freestream density with negligible error.
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Alternatively, either the total temperature or the total pressure could be specified at
the layer L of rotor grid points from which the density could be derived, as shown
below.

In the absence of a Navier-Stokes solution about the individual blades which would
yield the total temperature or total pressure immediately downstream of the rotor
disk, experimental data must be utilized. Here it is assumed that the total pressure
Po|1 produced by the rotor at each elemental area of the rotor disk acts at the inflow
boundary L and is known. The rotor can be regarded as a compressor of very low
pressure ratio. The definition of compressor efficiency 7 is used to relate the total
temperature ratio across the rotor T,|r / To|L4+1 to the total pressure ratio across the

rotor p,|L / PolL+1 (see, for example, Oates [67]):

(=)™ 1)

50
T0|L+1 ( )

The total pressure and the total temperature immediately above the rotor po|r41
and T,|.41, respectively, are assumed to be unchanged from their freestream ambient
values. The local rotor efficiency 7 is estimated as described below. Equation 50 is
used to compute the local total temperature immediately downstream of the rotor
(at the inflow boundary L) T,|y.

Compressor efficiency is defined as the ideal work divided by the actual work, for
a given pressure ratio [67]. If the efficiency were 100%, the compression process would
be isentropic — i.e. there would be no losses due to viscous dissipation or shocks on
the rotor blades. The previously-described blade element theory can be used to obtain
an estimate of the local compressor efficiency. The aerodynamic efficiency in hover is
the ratio of the ideal power to the actual power for a given thrust (see, for example,
Stepniewski [68]). For a rotor having a constant rotational speed, this reduces to the
ratio of torques, which is essentially equivalent to the definition of the compressor
efficiency. The actual local torque on an elemental area of the rotor disk is given by
Eq. 46. The ideal torque is the required torque where the losses are zero. The ideal
process is an isentropic (inviscid, adiabatic) process. The 2-D drag coefficient Cy of

Eq. 46 is comprised of all the non-isentropic contributions to drag, i.e. the viscous
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effects and shocks. The ideal local torque, therefore, can be determined from Eq. 46
by simply setting Cy to zero. Taking the ratio of ideal to actual torque, the local
compressor efficiency can be estimated by:

"Cysin (¢ + «;)

1= Crsin (6 + ) + Cycos (6 + o) (51)

Below the rotor, the flow can again be assumed to be isentropic. The isen-
tropic flow relations (see any textbook on compressible fluid dynamics, for example,
Ref. [35]) can then be used to compute the static temperature at the layer L of rotor

grid points, using the total temperature computed from Eq. 50:

L‘;—l
TL=T,L ('&—) (62)
polL

With p|p from Eq. 49 and T|;, from Eq. 52, the density p|. is determined from the
equation of state for an ideal gas:

_ Pl
Pl = (53)

In the current formulation, since experimental data was not available, the total pres-
sure imparted by the rotor is assumed to be simply the sum of the static and dynamic
pressures at rotor grid points L assuming a freestream value of density.

The final inflow boundary condition is not specified as the others, but, rather,
is extrapolated. The mass flow normal to the rotor pw|; is updated by applying

zero-order extrapolation using the computed flowfield values at L — 1:
pulL = pwlr-1 (54)

The above inflow boundary conditions are computed at all rotor grid points of
layer L using values of the flow parameters (at either L +1 or L — 1) from the current
(most recent) computation,

The row L + 1 of rotor grid points is considered to be an outflow boundary. In
other words, the flow is viewed as exiting from the region above the rotor. For the
outflow boundary conditions to be consistent, four flow properties are extrapolated

and one is fixed. The density p, the mass fluxes pu and pv, and the total energy e are
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updated using zero-order extrapolation from the solution at L + 2. Mass continuity
through the rotor disk is ensured by specifying
pwlL41 = pwlL . (55)
The swirl is imparted by the rotor to the flowfield downstream of the rotor disk.
The rotational motion (swirl) upstream of the rotor is essentially zero. In early
computations using the method described above, the computations showed signifi-
cant swirl in the flowfield abo'vé”(rupstream of) the rotor. The rotor model, then,
did not produce the expected behavior. This was attributed to the explicit artificial
smoothing which, as formulated, was attempting to smooth out the flow discontinu-
ities introduced by the rotor between the L and L + 1 horizontal layers of rotor grid
points. To eliminate this unwanted artificial dissipation, one-sided differencing, as
opposed to the standard central differencing, is used when computing the smoothing
at the L + 2 grid points above the rotor and for the L —1 grid points below the rotor.
This one-sided differencing is similar to that applied adjacent to the computational
boundaries. This approach serves to isolate the calculation of the artificial smoothing
from the flow discontinuities imposed by the rotor. It is very effective in eliminating

the unwanted introduction of swirl above the rotor disk.

Calculation of Overall Rotor Performance

The total thrust and torque on the rotor disk are calculated by integrating the con-
tributions from all elemental areas on the rotor disk. Eqs. 42 and 46 can be easily
written in terms of §?T/drdvy and 9*Q/0rdy, respectively. Then

Tror = /OR/021r (6‘2T/6r01/)) dr dy
@ror = [ [ (¢°Qr0r0u) aray (56)

where R is the rotor radius. The total rotor thrust coefficient and total rotor torque
coefficient, in hover, are calculated using the standard definitions:

T
Cr TOT

pA(QR)? ,
_ Qror
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where {2 is the rotor rotational speed, and A is the rotor disk area.

The figure of merit FM is a measure of hover efficiency. It is defined as the
ratio of the minimum possible power (ideal induced power) required to hover to
the actual power required to hover (induced power plus profile power) for a given
thrust. It can be expressed in terms of the rotor thrust coefficient C7 and the rotor
power coefficient Cp. Note that in hover, the power coefficient is equal to the torque
coefficient, i.e. Cp = Cq. The figure of merit, then, can be expressed as (see, for

example, Johnson [18]):

a2
FM = CT_/Q (58)
Cq

Except where otherwise noted, the rotor model assumes that the blades extend
to the rotor centerline, and no account is taken of the rotor hub or its effect on the

flowfield.

Iteration Procedure for Rotor

For a given rotor having specified blade geometry and for a given operating thrust
coefficient C7, an iterative solution procedure outlined below gives the local pressure
rise and swirl velocity at each elemental area of the rotor disk, at a converged value
of blade pitch angle setting 3 (also called collective). This procedure is performed at
every time step of the Navier-Stokes solution. The starting solution for this iteration

procedure is a previously-converged solution for a uniformly-loaded rotor operating |

at an equivalent thrust coeflicient.

1. Input rotor RPM, and rotor geometry including:

e number of blades
® rotor radius

blade planform shape, i.e. local chord ¢ distribution

blade twist relative to the 75% radial location, i.e. local 6 distribution

2. Input 2-D airfoil characteristics: €}, Cy as a function of a and M.
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3. Extract the most recently computed values of the flow properties in the plane

of the rotor; in particular, the flow angles and velocities.
4. Input desired total thrust coefficient Cry,,-
5. Make a guess for the blade pitch angle 3.

6. At each elemental area of the rotor disk, calculate Ap and V; using the above

information.
7. Integrate over the rotor disk to obtain Cr and Cjy.

8. If Cr is within a certain specified tolerance from the desired, user-specified value
of thrust coefficient Crg,,, then the solution is converged; otherwise, update the
estimate of B by applying the false position method (refer, for example, to
Ref. [69]) to find the root of the function F' = Cr — Cr4.,. The new guess for
the blade pitch angle 3., can be written as '

_ - F(ﬂlo!ﬂ) _
ﬂnew - ﬂlaw F (ﬂold) _F (ﬂlow) (ﬂold ﬁlow)

where B,y is a specified value of 3 known to be lower than the converged value,
and f,q is the previous guess for the blade pitch angle. With B, go to step
(6) and repeat steps (6) through (8).

4.4 Wall Jet

In previous CFD studies, Yeh [33] used multiple zones and Tavella et al. [70] used
actuator planes to model a tangential, circulation-control jet on the surface of a wing.
In the current approach, the blanking feature of the “chimera” scheme is employed to
model the jet, in a manner similar to that used for the rotor. It is a new and effective
technique and not restricted to application at zonal boundaries as are the previous
methods. .

To simplify grid generation, the spanwise step in the wing surface formed by the

blowing slot is not resolved. As described below, the wall jet is imposed at a number
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of grid points normal to the surface. Except for the local computed pressure, the jet
is defined independently of the local flowfield. The jet, then, is assumed to dominate
the local flowfield and to be unaffected by any upstream boundary layer development.
A similar approach taken in Ref. [70], for tangential leading edge blowing on a delta
wing, was found to give results that were of comparable accuracy to computations
where the jet slot was fully resolved.

Refer to Fig. 12 during the following discussion. To model the jet, a selected
number L;.; (seven are used here) of grid points along grid lines J and J + 1, for all
2-D grid planes inboard of the wing tip, are defined at which the implicit solution
is “blanked”, or excluded. The solution is updated explicitly with the “internal
boundary conditions” described below. The primary wall jet boundary conditions
are specified at the Lj. points on grid line J and are considered to form an inflow
boundary. The grid line immediately upstream, i.e. J 4 1, is considered to be an
outflow boundary.

For the inflow boundary at J, the static pressure p at the jet slot exit is assumed
constant across the width (0.2%c) of the jet and equal to the computed pressure
immediately outside the jet slot, i.e. the pressure at L;. + 1 (see Fig. 12). The
temperature at the jet exit is assumed to be freestream ambient. The density p can
then be computed from the equation of state for a perfect gas. The total jet plenum
supply pressure p, is normalized by the freestream ambient pressure and is a user
input. The Mach number at the jet exit is calculated assuming isentropic expansion
of the compressed air from the plenum pressure p, to the local static pressure p at
the jet exit. Employing also the definition of the speed of sound, the jet exit velocity

is given by (see any textbook on compressible fluid dynamics):

~(y-1)

P\ " 2y p
Vi = L 1| =L £ 59
et (pp) v—1p (59)

The jet is assumed to be tangent to the airfoil surface at the jet exit.
At the outflow boundary at J + 1, the pressure is fixed by applying the computed
value of pressure just outside the slot region (i.e. the pressure at Lj.;+1). First-order

extrapolation, using the flow properties at J + 1 and J + 2, is employed to update
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all the remaining required flow properties, i.e. density and the mass fluxes. If the
points J+ 1 and J + 2 are relatively far apart and the flow gradients large, first-order
extrapolation may be unstable. In such cases, zero-order extrapolation is employed.
Except where otherwise ,noted, however, first-order extrapolation has been employed.
Typically the blowing momentum coefficient C, is defined as the ratio of the
jet momentum to the freestream momentum. In the current hover computation,
however, where the freestream velocity is essentially zero, the freestream momentum
is replaced by the momentum imparted by the rotor. Writing both the numerator
and the denominator per unit length, the blowing momentum coefficient is defined
here to be )
o, = oo (60)
T/Ac
where Vj., is the jet exit velocity defined in Eq. 59, & is the slot height, T'//A is the
rotor thrust loading, and c is the wing chord. Applying the definition of the rotor

thrust coefficient Cr from Eq. 57, the blowing momentum coefficient becomes

o = Vieh (61)
7 Cr(QR)’c

In the present computation the density variation is very small and has been neglected

in the above definition.
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Figure 10: Top view of grid points in rotor plane, superimposed with the outline of
the subdivided actuator disk.

Voo + V.

direction of
rotating blade

Figure 11: Relative velocities and forces at an elemental area of the rotor disk.
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J+2

PI+1,Lyju+1

J+1 (OUTFLOW BOUNDARY)

J  (INFLOW BOUNDARY)

Figure 12: Blow-up of grid near the leading edge showing the inflow and outflow
boundary conditions implemented for the tangential jet.
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Chapter 5

Discussion of Results

5.1 Preliminary Comments

This chapter presents the results obtained for a variety of cases involving computa-
tions of a rotor alone and wing/rotor interaction. Results for the rotor alone serve
not only to validate the current numerical model, but also to highlight some of its
limitations. Computations have been performed for a uniformly-loaded rotor with
no swirl, where a constant pressure rise across the disk is specified. Results for a
non-uniformly-loaded rotor with swirl are also presented, where the rotor is modeled
using the blade element/momentum theory described in Chapter 4. Computed re-
sults of wing/rotor interaction are presented for both of the above rotor models. This
highlights the effects on wing download of swirl in the rotor flowfield. Finally, the
effect on download of tangential blowing at the wing leading edge is shown.

Most of the visualization of the grids and solutions during the course of this
work, and many of the figures in this report, have been generated using the computer
graphics program known as PLOT3D [71,72]. Developed by Buning at NASA Ames
Research Center, PLOT3D is a powerful interactive graphics tool capable of calcu-
lating and displaying a considerable number of different flowfield functions including

pressure, Mach number, velocity vectors, and particle traces.
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5.2 Rotor Alone

Accurate definition of the wing using stacked O-grids, as discussed in Chapter 3,
results in a Cartesian-like grid representation for the rotor (refer, for example, to
Fig. 10). Therefore, to provide a test, for the rotor alone, which is representative of
the rotor model in the wing/rotor interaction computations, a Cartesian grid is used.
VThe outer boundaries of the Cartesian grid extend five rotor radii from the rotor disk
axis of rotation in the horizontal and vertical directions. The'grid has dimensions
of 47x47x47 with most of the grid points clustered in the region of the rotor disk.
On each of the two principal axes on the rotor disk are defined 26 points along the
rotor diameter. The grid spacing stretches from a